-
Previous Article
Polynomial chaos based uncertainty quantification in Hamiltonian, multi-time scale, and chaotic systems
- JCD Home
- This Issue
-
Next Article
Lattice structures for attractors I
Optimizing the stable behavior of parameter-dependent dynamical systems --- maximal domains of attraction, minimal absorption times
1. | Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany |
2. | Klinikum rechts der Isar der Technischen Universität München, Dept. of Plastic and Reconstructive Surgery, Ismaninger Straße 22, München, Germany |
References:
[1] |
E. J. Davison and E. M. Kurak, A computational method for determining quadratic Lyapunov functions for non-linear systems, Automatica, 7 (1971), 627-636, URL http://www.sciencedirect.com/science/article/pii/0005109871900276.
doi: 10.1016/0005-1098(71)90027-6. |
[2] |
M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numerische Mathematik, 75 (1997), 293-317.
doi: 10.1007/s002110050240. |
[3] |
M. Dellnitz and O. Junge, An adaptive subdivision technique for the approximation of attractors and invariant measures, Comput. Visual. Sci., 1 (1998), 63-68.
doi: 10.1007/s007910050006. |
[4] |
H. Flashner and R. S. Guttalu, A computational approach for studying domains of attraction for non-linear systems, Int. J. Non-Linear Mech., 23 (1988), 279-295.
doi: 10.1016/0020-7462(88)90026-1. |
[5] |
G. Froyland, O. Junge and P. Koltai, Estimating long term behavior of flows without trajectory integration: the infinitesimal generator approach, SIAM J. Numer. Anal., 51 (2013), 223-247.
doi: 10.1137/110819986. |
[6] |
R. Genesio, M. Tartaglia and A. Vicino, On the estimation of asymptotic stability regions: State of the art and new proposals, Automatic Control, IEEE Transactions on, 30 (1985), 747-755.
doi: 10.1109/TAC.1985.1104057. |
[7] |
P. Giesl, On the determination of the basin of attraction of periodic orbits in three- and higher-dimensional systems, J. Math. Anal. Appl., 354 (2009), 606-618.
doi: 10.1016/j.jmaa.2009.01.027. |
[8] |
S. Goldschmidt, N. Neumann and J. Wallaschek, On the application of set-oriented numerical methods in the analysis of railway vehicle dynamics, in ECCOMAS 2004, 2004. |
[9] |
L. Grüne, Subdivision techniques for the computation of domains of attraction and reachable sets, in NOLCOS 2001, (2001), 762-767. |
[10] |
W. Hahn, Stability of Motion, Springer-Verlag, Berlin, 1967. |
[11] |
C. S. Hsu, A theory of cell-to-cell mapping dynamical systems, SME J. appl. Mech., 47 (1980), 931-939.
doi: 10.1115/1.3153816. |
[12] |
C. S. Hsu and R. S. Guttalu, An unravelling algorithm for global analysis of dynamical systems: an application of cell-to-cell mappings, ASME J. appl. Mech., 47 (1980), 940-948.
doi: 10.1115/1.3153817. |
[13] |
P. Koltai, Efficient Approximation Methods for the Global Long-Term Behavior of Dynamical Systems - Theory, Algorithms and Examples, PhD thesis, Technische Universität München, 2010. |
[14] |
P. Koltai, A stochastic approach for computing the domain of attraction without trajectory simulation, Disc. Cont. Dynam. Sys., Supplement, II (2011), 854-863. |
[15] |
H. J. Kushner, Probability Methods for Approximations in Stochastic Control and for Elliptic Equations, Academic Press, New York, 1977. |
[16] |
H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, 2nd edition, Springer-Verlag, New York, 1992.
doi: 10.1007/978-1-4684-0441-8. |
[17] |
J. P. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications, Mathematics in science and engineering, Academic Press, 1961, URL http://books.google.de/books?id=UsU-AAAAIAAJ. |
[18] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511791253. |
[19] |
D.-C. Liaw and C.-H. Lee, An approach to estimate domain of attraction for nonlinear control systems, Proceedings of the First International Conference on Innovative Computing, Information and Control. |
[20] |
Y. Nesterov, A method for unconstrained convex minimization problem with the rate of convergence $o(1/k^2)$, Doklady AN SSSR (translated as Soviet Math. Docl.), 269 (1983), 543-547. |
[21] | |
[22] |
D. N. Shields and C. Storey, The behaviour of optimal Lyapunov functions, International Journal of Control, 21 (1975), 561-573, URL http://www.tandfonline.com/doi/abs/10.1080/00207177508922012.
doi: 10.1080/00207177508922012. |
[23] |
D. M. Walker, The expected time until absorption when absorption is not certain, J. Appl. Prob., 35 (1998), 812-823.
doi: 10.1239/jap/1032438377. |
[24] |
V. I. Zubov, Methods of A.M. Lyapunov and Their Application, P. Noordhoff, Groningen, 1964. |
show all references
References:
[1] |
E. J. Davison and E. M. Kurak, A computational method for determining quadratic Lyapunov functions for non-linear systems, Automatica, 7 (1971), 627-636, URL http://www.sciencedirect.com/science/article/pii/0005109871900276.
doi: 10.1016/0005-1098(71)90027-6. |
[2] |
M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numerische Mathematik, 75 (1997), 293-317.
doi: 10.1007/s002110050240. |
[3] |
M. Dellnitz and O. Junge, An adaptive subdivision technique for the approximation of attractors and invariant measures, Comput. Visual. Sci., 1 (1998), 63-68.
doi: 10.1007/s007910050006. |
[4] |
H. Flashner and R. S. Guttalu, A computational approach for studying domains of attraction for non-linear systems, Int. J. Non-Linear Mech., 23 (1988), 279-295.
doi: 10.1016/0020-7462(88)90026-1. |
[5] |
G. Froyland, O. Junge and P. Koltai, Estimating long term behavior of flows without trajectory integration: the infinitesimal generator approach, SIAM J. Numer. Anal., 51 (2013), 223-247.
doi: 10.1137/110819986. |
[6] |
R. Genesio, M. Tartaglia and A. Vicino, On the estimation of asymptotic stability regions: State of the art and new proposals, Automatic Control, IEEE Transactions on, 30 (1985), 747-755.
doi: 10.1109/TAC.1985.1104057. |
[7] |
P. Giesl, On the determination of the basin of attraction of periodic orbits in three- and higher-dimensional systems, J. Math. Anal. Appl., 354 (2009), 606-618.
doi: 10.1016/j.jmaa.2009.01.027. |
[8] |
S. Goldschmidt, N. Neumann and J. Wallaschek, On the application of set-oriented numerical methods in the analysis of railway vehicle dynamics, in ECCOMAS 2004, 2004. |
[9] |
L. Grüne, Subdivision techniques for the computation of domains of attraction and reachable sets, in NOLCOS 2001, (2001), 762-767. |
[10] |
W. Hahn, Stability of Motion, Springer-Verlag, Berlin, 1967. |
[11] |
C. S. Hsu, A theory of cell-to-cell mapping dynamical systems, SME J. appl. Mech., 47 (1980), 931-939.
doi: 10.1115/1.3153816. |
[12] |
C. S. Hsu and R. S. Guttalu, An unravelling algorithm for global analysis of dynamical systems: an application of cell-to-cell mappings, ASME J. appl. Mech., 47 (1980), 940-948.
doi: 10.1115/1.3153817. |
[13] |
P. Koltai, Efficient Approximation Methods for the Global Long-Term Behavior of Dynamical Systems - Theory, Algorithms and Examples, PhD thesis, Technische Universität München, 2010. |
[14] |
P. Koltai, A stochastic approach for computing the domain of attraction without trajectory simulation, Disc. Cont. Dynam. Sys., Supplement, II (2011), 854-863. |
[15] |
H. J. Kushner, Probability Methods for Approximations in Stochastic Control and for Elliptic Equations, Academic Press, New York, 1977. |
[16] |
H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, 2nd edition, Springer-Verlag, New York, 1992.
doi: 10.1007/978-1-4684-0441-8. |
[17] |
J. P. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications, Mathematics in science and engineering, Academic Press, 1961, URL http://books.google.de/books?id=UsU-AAAAIAAJ. |
[18] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511791253. |
[19] |
D.-C. Liaw and C.-H. Lee, An approach to estimate domain of attraction for nonlinear control systems, Proceedings of the First International Conference on Innovative Computing, Information and Control. |
[20] |
Y. Nesterov, A method for unconstrained convex minimization problem with the rate of convergence $o(1/k^2)$, Doklady AN SSSR (translated as Soviet Math. Docl.), 269 (1983), 543-547. |
[21] | |
[22] |
D. N. Shields and C. Storey, The behaviour of optimal Lyapunov functions, International Journal of Control, 21 (1975), 561-573, URL http://www.tandfonline.com/doi/abs/10.1080/00207177508922012.
doi: 10.1080/00207177508922012. |
[23] |
D. M. Walker, The expected time until absorption when absorption is not certain, J. Appl. Prob., 35 (1998), 812-823.
doi: 10.1239/jap/1032438377. |
[24] |
V. I. Zubov, Methods of A.M. Lyapunov and Their Application, P. Noordhoff, Groningen, 1964. |
[1] |
Liqiang Jin, Yanqing Liu, Yanyan Yin, Kok Lay Teo, Fei Liu. Design of probabilistic $ l_2-l_\infty $ filter for uncertain Markov jump systems with partial information of the transition probabilities. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2335-2349. doi: 10.3934/jimo.2021070 |
[2] |
Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3013-3026. doi: 10.3934/jimo.2020105 |
[3] |
Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137-160. doi: 10.3934/fmf.2021005 |
[4] |
Xian Chen, Zhi-Ming Ma. A transformation of Markov jump processes and applications in genetic study. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5061-5084. doi: 10.3934/dcds.2014.34.5061 |
[5] |
Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367 |
[6] |
Michel Pierre, Grégory Vial. Best design for a fastest cells selecting process. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 223-237. doi: 10.3934/dcdss.2011.4.223 |
[7] |
Péter Koltai. A stochastic approach for computing the domain of attraction without trajectory simulation. Conference Publications, 2011, 2011 (Special) : 854-863. doi: 10.3934/proc.2011.2011.854 |
[8] |
Yanqing Liu, Yanyan Yin, Kok Lay Teo, Song Wang, Fei Liu. Probabilistic control of Markov jump systems by scenario optimization approach. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1447-1453. doi: 10.3934/jimo.2018103 |
[9] |
Benoît Perthame, P. E. Souganidis. Front propagation for a jump process model arising in spacial ecology. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1235-1246. doi: 10.3934/dcds.2005.13.1235 |
[10] |
Xingchun Wang. Pricing path-dependent options under the Hawkes jump diffusion process. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022024 |
[11] |
Fágner D. Araruna, Flank D. M. Bezerra, Milton L. Oliveira. Rate of attraction for a semilinear thermoelastic system with variable coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3211-3226. doi: 10.3934/dcdsb.2018316 |
[12] |
Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005 |
[13] |
Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581 |
[14] |
Pavel Chigansky, Fima C. Klebaner. The Euler-Maruyama approximation for the absorption time of the CEV diffusion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1455-1471. doi: 10.3934/dcdsb.2012.17.1455 |
[15] |
Igor Pažanin, Marcone C. Pereira. On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption. Communications on Pure and Applied Analysis, 2018, 17 (2) : 579-592. doi: 10.3934/cpaa.2018031 |
[16] |
Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control and Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451 |
[17] |
Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 197-212. doi: 10.3934/dcdss.2021036 |
[18] |
Weike Wang, Yucheng Wang. Global existence and large time behavior for the chemotaxis–shallow water system in a bounded domain. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6379-6409. doi: 10.3934/dcds.2020284 |
[19] |
Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1891-1913. doi: 10.3934/jimo.2021048 |
[20] |
P.E. Kloeden, Pedro Marín-Rubio. Equi-Attraction and the continuous dependence of attractors on time delays. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 581-593. doi: 10.3934/dcdsb.2008.9.581 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]