-
Previous Article
Symmetry exploiting control of hybrid mechanical systems
- JCD Home
- This Issue
-
Next Article
Preface: Special issue on the occasion of the 4th International Workshop on Set-Oriented Numerics (SON 13, Dresden, 2013)
Modularity of directed networks: Cycle decomposition approach
1. | Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany, Germany |
References:
[1] |
B. Altaner, S. Grosskinsky, S. Herminghaus, L. Katthän, M. Timme and J. Vollmer, Network representations of nonequilibrium steady states: Cycle decompositions, symmetries, and dominant paths,, Phys. Rev. E, 85 (2012).
doi: 10.1103/PhysRevE.85.041133. |
[2] |
A. Arenas, J. Duch, A. Fernández and S. Gómez, Size reduction of complex networks preserving modularity,, New Journal of Physics, 9 (2007).
doi: 10.1088/1367-2630/9/6/176. |
[3] |
R. Banisch and N. D. Conrad, Cycle-flow based module detection in directed recurrence networks,, EPL (Europhysics Letters), 108 (2014), 0295.
doi: 10.1209/0295-5075/108/68008. |
[4] |
A. Barrat, M. Barthelemy, R. Pastor-Satorras and A. Vespignani, The architecture of complex weighted networks,, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004), 3747.
doi: 10.1073/pnas.0400087101. |
[5] |
G. R. Bowman and V. S. Pande and F. Noé, editors, An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation,, volume 797 of Advances in Experimental Medicine and Biology, (2014).
doi: 10.1007/978-94-007-7606-7_11. |
[6] |
J. Chen and B. Yuan, Detecting functional modules in the yeast protein-protein interaction network,, Bioinformatics, 22 (2006), 2283.
doi: 10.1093/bioinformatics/btl370. |
[7] |
D. Cvetkovic, P. Rowlinson and S. Simic, Spectral Generalizations of Line Graphs,, Cambridge University Press, (2004).
doi: 10.1017/CBO9780511751752. |
[8] |
P. Deuflhard and M. Weber, Robust perron cluster analysis in conformation dynamics,, Linear Algebra and its Applications, 398 (2005), 161.
doi: 10.1016/j.laa.2004.10.026. |
[9] |
N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schütte, Random walks on complex modular networks,, Journal of Numerical Analysis, 6 (2011), 29.
|
[10] |
N. Djurdjevac, M. Sarich and C. Schütte, Estimating the eigenvalue error of markov state models,, Multiscale Modeling & Simulation, 10 (2012), 61.
doi: 10.1137/100798910. |
[11] |
T. S. Evans and R. Lambiotte, Line graphs, link partitions, and overlapping communities,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.016105. |
[12] |
S. Fortunato, Community detection in graphs,, Physics Reports, 486 (2010), 75.
doi: 10.1016/j.physrep.2009.11.002. |
[13] |
M. Girvan and M. Newman, Community structure in social and biological networks,, Proceedings of the National Academy of Sciences of the United States of America, 99 (2002), 7821.
doi: 10.1073/pnas.122653799. |
[14] |
D. Jiang, M. Qian and M.-P. Quian, Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems,, Springer, (2004).
doi: 10.1007/b94615. |
[15] |
S. L. Kalpazidou, Cycle Representations of Markov Processes,, Springer, (2006).
|
[16] |
Y. Kim, S.-W. Son and H. Jeong, Finding communities in directed networks,, Phys. Rev. E, 81 (2010).
doi: 10.1103/PhysRevE.81.016103. |
[17] |
R. Lambiotte, J. C. Delvenne and M. Barahona, Laplacian dynamics and multiscale modular structure in networks,, ArXiv., (). Google Scholar |
[18] |
A. Lancichinetti and S. Fortunato, Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.016118. |
[19] |
A. Lancichinetti, F. Radicchi, J. J. Ramasco and S. Fortunato, Finding statistically significant communities in networks,, PLoS ONE, 6 (2011).
doi: 10.1371/journal.pone.0018961. |
[20] |
E. A. Leicht and M. E. J. Newman, Community structure in directed networks,, Phys. Rev. Lett., 100 (2008).
doi: 10.1103/PhysRevLett.100.118703. |
[21] |
T. Li, J. Liu and W. E, Probabilistic framework for network partition,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.026106. |
[22] |
F. D. Malliaros and M. Vazirgiannis, Clustering and community detection in directed networks: A survey,, Physics Reports, 533 (2013), 95.
doi: 10.1016/j.physrep.2013.08.002. |
[23] |
J. Mattingly, A. M. Stuart and D. J. Higham, Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerated noise,, Stochastic Process Appl., 101 (2002), 185.
doi: 10.1016/S0304-4149(02)00150-3. |
[24] |
P. Metzner, C. Schütte and E. Vanden-Eijnden, Transition path theory for markov jump processes,, Multiscale Modeling & Simulation, 7 (2008), 1192.
doi: 10.1137/070699500. |
[25] |
M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.
doi: 10.1137/S003614450342480. |
[26] |
M. E. J. Newman, Fast algorithm for detecting community structure in networks,, Phys. Rev. E, 69 (2004).
doi: 10.1103/PhysRevE.69.066133. |
[27] |
M. E. J. Newman, Modularity and community structure in networks,, Proceedings of the National Academy of Sciences, 103 (2006), 8577.
doi: 10.1073/pnas.0601602103. |
[28] |
V. Nicosia, G. Mangioni, V. Carchiolo and M. Malgeri, Extending the definition of modularity of directed graphs with overlapping communities,, Journal of Statistical Mechanics: Theory and Experiment, 2009 (2009).
doi: 10.1088/1742-5468/2009/03/P03024. |
[29] |
P. Pakoński, G. Tanner and K. .Zyczkowski, Families of line-graphs and their quantization,, Journal of Statistical Physics, 111 (2003), 1331.
doi: 10.1023/A:1023012502046. |
[30] |
G. Palla, I. Derenyi, I. Farkas and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society,, Nature, 435 (2005), 814.
doi: 10.1038/nature03607. |
[31] |
M. A. Porter, J.-P. Onnela and P. J. Mucha, Communities in networks,, Notices of the American Mathematical Society, 56 (2009), 1082.
|
[32] |
H. Risken, The Fokker-Planck Equation,, Springer, (1996). Google Scholar |
[33] |
M. Sarich, N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schütte, Modularity revisited: A novel dynamics-based concept for decomposing complex networks,, Journal of Computational Dynamics, 1 (2014), 191.
doi: 10.3934/jcd.2014.1.191. |
[34] |
M. Sarich, F. Noé and C. Schütte, On the Approximation Quality of Markov State Models,, Multiscale Modeling & Simulation, 8 (2010), 1154.
doi: 10.1137/090764049. |
[35] |
M. Sarich, C. Schütte and E. Vanden-Eijnden, Optimal fuzzy aggregation of networks,, Multiscale Modeling & Simulation, 8 (2010), 1535.
doi: 10.1137/090758519. |
[36] |
M. T. Schaub, J.-C. Delvenne, S. N. Yaliraki and M. Barahona, Markov dynamics as a zooming lens for multiscale community detection: Non clique-like communities and the field-of-view limit,, PLoS ONE, 7 (2012).
doi: 10.1371/journal.pone.0032210. |
[37] |
M. T. Schaub, R. Lambiotte and M. Barahona, Encoding dynamics for multiscale community detection: Markov time sweeping for the map equation,, Phys. Rev. E, 86 (2012).
doi: 10.1103/PhysRevE.86.026112. |
[38] |
J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems,, Rev. Mod. Phys., 48 (1976), 571.
doi: 10.1103/RevModPhys.48.571. |
[39] |
Ch. Schütte and M. Sarich, Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches,, volume 24 of Courant Lecture Notes, (2013).
|
[40] |
A. Viamontes Esquivel and M. Rosvall, Compression of flow can reveal overlapping-module organization in networks,, Phys. Rev. X, 1 (2011).
doi: 10.1103/PhysRevX.1.021025. |
[41] |
R. K. P. Zia and B. Schmittmann, Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states,, Journal of Statistical Mechanics-theory and Experiment, 2007 (2007).
doi: 10.1088/1742-5468/2007/07/P07012. |
show all references
References:
[1] |
B. Altaner, S. Grosskinsky, S. Herminghaus, L. Katthän, M. Timme and J. Vollmer, Network representations of nonequilibrium steady states: Cycle decompositions, symmetries, and dominant paths,, Phys. Rev. E, 85 (2012).
doi: 10.1103/PhysRevE.85.041133. |
[2] |
A. Arenas, J. Duch, A. Fernández and S. Gómez, Size reduction of complex networks preserving modularity,, New Journal of Physics, 9 (2007).
doi: 10.1088/1367-2630/9/6/176. |
[3] |
R. Banisch and N. D. Conrad, Cycle-flow based module detection in directed recurrence networks,, EPL (Europhysics Letters), 108 (2014), 0295.
doi: 10.1209/0295-5075/108/68008. |
[4] |
A. Barrat, M. Barthelemy, R. Pastor-Satorras and A. Vespignani, The architecture of complex weighted networks,, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004), 3747.
doi: 10.1073/pnas.0400087101. |
[5] |
G. R. Bowman and V. S. Pande and F. Noé, editors, An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation,, volume 797 of Advances in Experimental Medicine and Biology, (2014).
doi: 10.1007/978-94-007-7606-7_11. |
[6] |
J. Chen and B. Yuan, Detecting functional modules in the yeast protein-protein interaction network,, Bioinformatics, 22 (2006), 2283.
doi: 10.1093/bioinformatics/btl370. |
[7] |
D. Cvetkovic, P. Rowlinson and S. Simic, Spectral Generalizations of Line Graphs,, Cambridge University Press, (2004).
doi: 10.1017/CBO9780511751752. |
[8] |
P. Deuflhard and M. Weber, Robust perron cluster analysis in conformation dynamics,, Linear Algebra and its Applications, 398 (2005), 161.
doi: 10.1016/j.laa.2004.10.026. |
[9] |
N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schütte, Random walks on complex modular networks,, Journal of Numerical Analysis, 6 (2011), 29.
|
[10] |
N. Djurdjevac, M. Sarich and C. Schütte, Estimating the eigenvalue error of markov state models,, Multiscale Modeling & Simulation, 10 (2012), 61.
doi: 10.1137/100798910. |
[11] |
T. S. Evans and R. Lambiotte, Line graphs, link partitions, and overlapping communities,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.016105. |
[12] |
S. Fortunato, Community detection in graphs,, Physics Reports, 486 (2010), 75.
doi: 10.1016/j.physrep.2009.11.002. |
[13] |
M. Girvan and M. Newman, Community structure in social and biological networks,, Proceedings of the National Academy of Sciences of the United States of America, 99 (2002), 7821.
doi: 10.1073/pnas.122653799. |
[14] |
D. Jiang, M. Qian and M.-P. Quian, Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems,, Springer, (2004).
doi: 10.1007/b94615. |
[15] |
S. L. Kalpazidou, Cycle Representations of Markov Processes,, Springer, (2006).
|
[16] |
Y. Kim, S.-W. Son and H. Jeong, Finding communities in directed networks,, Phys. Rev. E, 81 (2010).
doi: 10.1103/PhysRevE.81.016103. |
[17] |
R. Lambiotte, J. C. Delvenne and M. Barahona, Laplacian dynamics and multiscale modular structure in networks,, ArXiv., (). Google Scholar |
[18] |
A. Lancichinetti and S. Fortunato, Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.016118. |
[19] |
A. Lancichinetti, F. Radicchi, J. J. Ramasco and S. Fortunato, Finding statistically significant communities in networks,, PLoS ONE, 6 (2011).
doi: 10.1371/journal.pone.0018961. |
[20] |
E. A. Leicht and M. E. J. Newman, Community structure in directed networks,, Phys. Rev. Lett., 100 (2008).
doi: 10.1103/PhysRevLett.100.118703. |
[21] |
T. Li, J. Liu and W. E, Probabilistic framework for network partition,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.026106. |
[22] |
F. D. Malliaros and M. Vazirgiannis, Clustering and community detection in directed networks: A survey,, Physics Reports, 533 (2013), 95.
doi: 10.1016/j.physrep.2013.08.002. |
[23] |
J. Mattingly, A. M. Stuart and D. J. Higham, Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerated noise,, Stochastic Process Appl., 101 (2002), 185.
doi: 10.1016/S0304-4149(02)00150-3. |
[24] |
P. Metzner, C. Schütte and E. Vanden-Eijnden, Transition path theory for markov jump processes,, Multiscale Modeling & Simulation, 7 (2008), 1192.
doi: 10.1137/070699500. |
[25] |
M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.
doi: 10.1137/S003614450342480. |
[26] |
M. E. J. Newman, Fast algorithm for detecting community structure in networks,, Phys. Rev. E, 69 (2004).
doi: 10.1103/PhysRevE.69.066133. |
[27] |
M. E. J. Newman, Modularity and community structure in networks,, Proceedings of the National Academy of Sciences, 103 (2006), 8577.
doi: 10.1073/pnas.0601602103. |
[28] |
V. Nicosia, G. Mangioni, V. Carchiolo and M. Malgeri, Extending the definition of modularity of directed graphs with overlapping communities,, Journal of Statistical Mechanics: Theory and Experiment, 2009 (2009).
doi: 10.1088/1742-5468/2009/03/P03024. |
[29] |
P. Pakoński, G. Tanner and K. .Zyczkowski, Families of line-graphs and their quantization,, Journal of Statistical Physics, 111 (2003), 1331.
doi: 10.1023/A:1023012502046. |
[30] |
G. Palla, I. Derenyi, I. Farkas and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society,, Nature, 435 (2005), 814.
doi: 10.1038/nature03607. |
[31] |
M. A. Porter, J.-P. Onnela and P. J. Mucha, Communities in networks,, Notices of the American Mathematical Society, 56 (2009), 1082.
|
[32] |
H. Risken, The Fokker-Planck Equation,, Springer, (1996). Google Scholar |
[33] |
M. Sarich, N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schütte, Modularity revisited: A novel dynamics-based concept for decomposing complex networks,, Journal of Computational Dynamics, 1 (2014), 191.
doi: 10.3934/jcd.2014.1.191. |
[34] |
M. Sarich, F. Noé and C. Schütte, On the Approximation Quality of Markov State Models,, Multiscale Modeling & Simulation, 8 (2010), 1154.
doi: 10.1137/090764049. |
[35] |
M. Sarich, C. Schütte and E. Vanden-Eijnden, Optimal fuzzy aggregation of networks,, Multiscale Modeling & Simulation, 8 (2010), 1535.
doi: 10.1137/090758519. |
[36] |
M. T. Schaub, J.-C. Delvenne, S. N. Yaliraki and M. Barahona, Markov dynamics as a zooming lens for multiscale community detection: Non clique-like communities and the field-of-view limit,, PLoS ONE, 7 (2012).
doi: 10.1371/journal.pone.0032210. |
[37] |
M. T. Schaub, R. Lambiotte and M. Barahona, Encoding dynamics for multiscale community detection: Markov time sweeping for the map equation,, Phys. Rev. E, 86 (2012).
doi: 10.1103/PhysRevE.86.026112. |
[38] |
J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems,, Rev. Mod. Phys., 48 (1976), 571.
doi: 10.1103/RevModPhys.48.571. |
[39] |
Ch. Schütte and M. Sarich, Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches,, volume 24 of Courant Lecture Notes, (2013).
|
[40] |
A. Viamontes Esquivel and M. Rosvall, Compression of flow can reveal overlapping-module organization in networks,, Phys. Rev. X, 1 (2011).
doi: 10.1103/PhysRevX.1.021025. |
[41] |
R. K. P. Zia and B. Schmittmann, Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states,, Journal of Statistical Mechanics-theory and Experiment, 2007 (2007).
doi: 10.1088/1742-5468/2007/07/P07012. |
[1] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[2] |
Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37 |
[3] |
Gheorghe Craciun, Jiaxin Jin, Polly Y. Yu. Single-target networks. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021065 |
[4] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[5] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[6] |
Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299 |
[7] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[8] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[9] |
Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021013 |
[10] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[11] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[12] |
Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]