January  2015, 2(1): 65-81. doi: 10.3934/jcd.2015.2.65

Numerical event-based ISS controller design via a dynamic game approach

1. 

University of Bayreuth, Chair of Applied Mathematics, Universitätsstraße 30, 95440 Bayreuth

2. 

University of Bayreuth, Chair of Applied Mathematics, Universitãtsstraße 30, 95440 Bayreuth, Germany

Received  April 2014 Revised  January 2015 Published  August 2015

We present an event-based numerical design method for an input-to-state practically stabilizing (ISpS) state feedback controller for perturbed nonlinear discrete time systems. The controllers are designed to be constant on quantization regions which are not assumed to be small. A transition of the state from one quantization region to another triggers an event upon which the control value changes.
    The controller construction relies on the conversion of the ISpS design problem into a robust controller design problem which is solved by a set oriented discretization technique followed by the solution of a dynamic game on a hypergraph. We present and analyze this approach with a particular focus on keeping track of the quantitative dependence of the resulting gain and the size of the exceptional region for practical stability from the design parameters of our event-based controller.
Citation: Lars Grüne, Manuela Sigurani. Numerical event-based ISS controller design via a dynamic game approach. Journal of Computational Dynamics, 2015, 2 (1) : 65-81. doi: 10.3934/jcd.2015.2.65
References:
[1]

in Proc. 14th IFAC World Congress, 1999, 423-428. Google Scholar

[2]

in Proc. 14th IFAC World Congress, 1999, 301-306. Google Scholar

[3]

Springer US, 2015, 1-14. doi: 10.1007/s13235-015-0156-0.  Google Scholar

[4]

in Proc. 14th IFAC World Congress, 2011, 2401-2406. Google Scholar

[5]

SIAM, Philadephia, 2014.  Google Scholar

[6]

International Journal of Control, 82 (2009), 2235-2248. doi: 10.1080/00207170902978115.  Google Scholar

[7]

Discrete Contin. Dyn. Syst., 32 (2012), 3539-3565. doi: 10.3934/dcds.2012.32.3539.  Google Scholar

[8]

Springer, Berlin, 2007.  Google Scholar

[9]

at-Automatisierungstechnik (Special Issue on Networked Control Systems), 58 (2010), 173-182. Google Scholar

[10]

Systems Control Lett., 54 (2005), 169-180. doi: 10.1016/j.sysconle.2004.08.005.  Google Scholar

[11]

in Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, Louisiana, 2007, 702-707. Google Scholar

[12]

J. Optim. Theory Appl., 136 (2008), 411-429. doi: 10.1007/s10957-007-9312-z.  Google Scholar

[13]

IEEE Trans. Autom. Control, 59 (2014), 3098-3103. doi: 10.1109/TAC.2014.2321667.  Google Scholar

[14]

in Proc. 18th International Symposium on Mathematical Theory of Networks and Systems (MTNS2008), CD-Rom, Paper 125.pdf, Blacksburg, Virginia, 2008. Google Scholar

[15]

in Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, 2009, 5311-5316. Google Scholar

[16]

in Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy, 2013, 1732-1737. Google Scholar

[17]

Texas State University-San Marcos, Department of Mathematics, San Marcos, TX, 2007, Available electronically at http://ejde.math.txstate.edu/.  Google Scholar

[18]

Automatica, 37 (2001), 857-869. doi: 10.1016/S0005-1098(01)00028-0.  Google Scholar

[19]

Systems Control Lett., 45 (2002), 49-58. doi: 10.1016/S0167-6911(01)00164-5.  Google Scholar

[20]

ESAIM Control Optim. Calc. Var., 10 (2004), 259-270 (electronic). doi: 10.1051/cocv:2004006.  Google Scholar

[21]

Springer, 2014. doi: 10.1007/978-3-319-01131-8.  Google Scholar

[22]

Automatica, 46 (2010), 211-215. doi: 10.1016/j.automatica.2009.10.035.  Google Scholar

[23]

IEEE Trans. Autom. Control, 56 (2010), 2456-2461. doi: 10.1109/TAC.2011.2164036.  Google Scholar

[24]

Control Eng. Practice, 35 (2015), 22-34. doi: 10.1016/j.conengprac.2014.10.002.  Google Scholar

[25]

IEEE Trans. Autom. Control, 52 (2007), 1680-1685. doi: 10.1109/TAC.2007.904277.  Google Scholar

[26]

in Proc. Appl. Math. Mech. (PAMM), 7 (2007), 4130027-4130028. doi: 10.1002/pamm.200700646.  Google Scholar

[27]

in Proc. 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, Florida, 2011, 4698-4703. doi: 10.1109/CDC.2011.6160699.  Google Scholar

[28]

Automatica, 47 (2011), 2319-2322. doi: 10.1016/j.automatica.2011.05.027.  Google Scholar

[29]

in Proc. American Control Conference, 2011, 1674-1679. Google Scholar

show all references

References:
[1]

in Proc. 14th IFAC World Congress, 1999, 423-428. Google Scholar

[2]

in Proc. 14th IFAC World Congress, 1999, 301-306. Google Scholar

[3]

Springer US, 2015, 1-14. doi: 10.1007/s13235-015-0156-0.  Google Scholar

[4]

in Proc. 14th IFAC World Congress, 2011, 2401-2406. Google Scholar

[5]

SIAM, Philadephia, 2014.  Google Scholar

[6]

International Journal of Control, 82 (2009), 2235-2248. doi: 10.1080/00207170902978115.  Google Scholar

[7]

Discrete Contin. Dyn. Syst., 32 (2012), 3539-3565. doi: 10.3934/dcds.2012.32.3539.  Google Scholar

[8]

Springer, Berlin, 2007.  Google Scholar

[9]

at-Automatisierungstechnik (Special Issue on Networked Control Systems), 58 (2010), 173-182. Google Scholar

[10]

Systems Control Lett., 54 (2005), 169-180. doi: 10.1016/j.sysconle.2004.08.005.  Google Scholar

[11]

in Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, Louisiana, 2007, 702-707. Google Scholar

[12]

J. Optim. Theory Appl., 136 (2008), 411-429. doi: 10.1007/s10957-007-9312-z.  Google Scholar

[13]

IEEE Trans. Autom. Control, 59 (2014), 3098-3103. doi: 10.1109/TAC.2014.2321667.  Google Scholar

[14]

in Proc. 18th International Symposium on Mathematical Theory of Networks and Systems (MTNS2008), CD-Rom, Paper 125.pdf, Blacksburg, Virginia, 2008. Google Scholar

[15]

in Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, 2009, 5311-5316. Google Scholar

[16]

in Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy, 2013, 1732-1737. Google Scholar

[17]

Texas State University-San Marcos, Department of Mathematics, San Marcos, TX, 2007, Available electronically at http://ejde.math.txstate.edu/.  Google Scholar

[18]

Automatica, 37 (2001), 857-869. doi: 10.1016/S0005-1098(01)00028-0.  Google Scholar

[19]

Systems Control Lett., 45 (2002), 49-58. doi: 10.1016/S0167-6911(01)00164-5.  Google Scholar

[20]

ESAIM Control Optim. Calc. Var., 10 (2004), 259-270 (electronic). doi: 10.1051/cocv:2004006.  Google Scholar

[21]

Springer, 2014. doi: 10.1007/978-3-319-01131-8.  Google Scholar

[22]

Automatica, 46 (2010), 211-215. doi: 10.1016/j.automatica.2009.10.035.  Google Scholar

[23]

IEEE Trans. Autom. Control, 56 (2010), 2456-2461. doi: 10.1109/TAC.2011.2164036.  Google Scholar

[24]

Control Eng. Practice, 35 (2015), 22-34. doi: 10.1016/j.conengprac.2014.10.002.  Google Scholar

[25]

IEEE Trans. Autom. Control, 52 (2007), 1680-1685. doi: 10.1109/TAC.2007.904277.  Google Scholar

[26]

in Proc. Appl. Math. Mech. (PAMM), 7 (2007), 4130027-4130028. doi: 10.1002/pamm.200700646.  Google Scholar

[27]

in Proc. 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, Florida, 2011, 4698-4703. doi: 10.1109/CDC.2011.6160699.  Google Scholar

[28]

Automatica, 47 (2011), 2319-2322. doi: 10.1016/j.automatica.2011.05.027.  Google Scholar

[29]

in Proc. American Control Conference, 2011, 1674-1679. Google Scholar

[1]

Qi Li, Hong Xue, Changxin Lu. Event-based fault detection for interval type-2 fuzzy systems with measurement outliers. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1301-1328. doi: 10.3934/dcdss.2020412

[2]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[3]

Peng Cheng, Yanqing Liu, Yanyan Yin, Song Wang, Feng Pan. Fuzzy event-triggered disturbance rejection control of nonlinear systems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020119

[4]

Andrii Mironchenko, Hiroshi Ito. Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions. Mathematical Control & Related Fields, 2016, 6 (3) : 447-466. doi: 10.3934/mcrf.2016011

[5]

Gary Froyland, Oliver Junge, Kathrin Padberg-Gehle. Preface: Special issue on the occasion of the 4th International Workshop on Set-Oriented Numerics (SON 13, Dresden, 2013). Journal of Computational Dynamics, 2015, 2 (1) : i-ii. doi: 10.3934/jcd.2015.2.1i

[6]

Qiying Hu, Chen Xu, Wuyi Yue. A unified model for state feedback of discrete event systems II: Control synthesis problems. Journal of Industrial & Management Optimization, 2008, 4 (4) : 713-726. doi: 10.3934/jimo.2008.4.713

[7]

Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361

[8]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[9]

Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006

[10]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192

[11]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[12]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[13]

Qiying Hu, Wuyi Yue. Optimal control for discrete event systems with arbitrary control pattern. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 535-558. doi: 10.3934/dcdsb.2006.6.535

[14]

Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial & Management Optimization, 2020, 16 (2) : 965-990. doi: 10.3934/jimo.2018188

[15]

Qiying Hu, Chen Xu, Wuyi Yue. A unified model for state feedback of discrete event systems I: framework and maximal permissive state feedback. Journal of Industrial & Management Optimization, 2008, 4 (1) : 107-123. doi: 10.3934/jimo.2008.4.107

[16]

Stefan Jerg, Oliver Junge, Marcus Post. Global optimal feedbacks for stochastic quantized nonlinear event systems. Journal of Computational Dynamics, 2014, 1 (1) : 163-176. doi: 10.3934/jcd.2014.1.163

[17]

A. Alessandri, F. Bedouhene, D. Bouhadjra, A. Zemouche, P. Bagnerini. Observer-based control for a class of hybrid linear and nonlinear systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1213-1231. doi: 10.3934/dcdss.2020376

[18]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[19]

Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004

[20]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

 Impact Factor: 

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]