-
Previous Article
Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof
- JCD Home
- This Issue
-
Next Article
Numerical event-based ISS controller design via a dynamic game approach
Attraction-based computation of hyperbolic Lagrangian coherent structures
1. | ETH Zürich, Institute of Mechanical Systems, Leonhardstrasse 21, 8092 Zürich, Switzerland, Switzerland |
2. | ETH Zürich, Institute of Mechanical Systems, Rämistrasse 101, 8092 Zürich, Switzerland |
References:
[1] |
M. Farazmand, D. Blazevski and G. Haller, Shearless transport barriers in unsteady two-dimensional flows and maps,, Physica D, 278-279 (2014), 278.
doi: 10.1016/j.physd.2014.03.008. |
[2] |
M. Farazmand and G. Haller, Computing Lagrangian coherent structures from their variational theory,, Chaos, 22 (2012).
doi: 10.1063/1.3690153. |
[3] |
M. Farazmand and G. Haller, Attracting and repelling Lagrangian coherent structures from a single computation,, Chaos, 23 (2013).
doi: 10.1063/1.4800210. |
[4] |
M. Farazmand and G. Haller, How coherent are the vortices of two-dimensional turbulence?,, submitted preprint, (). Google Scholar |
[5] |
G. Haller, Lagrangian Coherent Structures,, Annual Review of Fluid Mechanics, 47 (2015), 137.
doi: 10.1146/annurev-fluid-010313-141322. |
[6] |
G. Haller and F. J. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows,, Physica D, 241 (2012), 1680.
doi: 10.1016/j.physd.2012.06.012. |
[7] |
G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent,, Chaos, 21 (2011).
doi: 10.1063/1.3579597. |
[8] |
G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352.
doi: 10.1016/S0167-2789(00)00142-1. |
[9] |
D. Karrasch, Attracting Lagrangian coherent structures on Riemannian manifolds,, Chaos, 25 (2015). Google Scholar |
[10] |
A. M. Mancho, D. Small, S. Wiggins and K. Ide, Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields,, Physica D, 182 (2003), 188.
doi: 10.1016/S0167-2789(03)00152-0. |
[11] |
K. Onu, F. Huhn and G. Haller, LCS Tool: A computational platform for Lagrangian coherent structures,, Journal of Computational Science, 7 (2015), 26.
doi: 10.1016/j.jocs.2014.12.002. |
[12] |
R. Peikert and F. Sadlo, Height Ridge Computation and Filtering for Visualization,, in Visualization Symposium, (2008), 119.
doi: 10.1109/PACIFICVIS.2008.4475467. |
[13] |
B. Schindler, R. Peikert, R. Fuchs and H. Theisel, Ridge Concepts for the Visualization of Lagrangian Coherent Structures,, in Topological Methods in Data Analysis and Visualization II (eds. R. Peikert, (2012), 221.
doi: 10.1007/978-3-642-23175-9_15. |
[14] |
K.-F. Tchon, J. Dompierre, M.-G. Vallet, F. Guibault and R. Camarero, Two-dimensional metric tensor visualization using pseudo-meshes,, Engineering with Computers, 22 (2006), 121.
doi: 10.1007/s00366-006-0012-3. |
show all references
References:
[1] |
M. Farazmand, D. Blazevski and G. Haller, Shearless transport barriers in unsteady two-dimensional flows and maps,, Physica D, 278-279 (2014), 278.
doi: 10.1016/j.physd.2014.03.008. |
[2] |
M. Farazmand and G. Haller, Computing Lagrangian coherent structures from their variational theory,, Chaos, 22 (2012).
doi: 10.1063/1.3690153. |
[3] |
M. Farazmand and G. Haller, Attracting and repelling Lagrangian coherent structures from a single computation,, Chaos, 23 (2013).
doi: 10.1063/1.4800210. |
[4] |
M. Farazmand and G. Haller, How coherent are the vortices of two-dimensional turbulence?,, submitted preprint, (). Google Scholar |
[5] |
G. Haller, Lagrangian Coherent Structures,, Annual Review of Fluid Mechanics, 47 (2015), 137.
doi: 10.1146/annurev-fluid-010313-141322. |
[6] |
G. Haller and F. J. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows,, Physica D, 241 (2012), 1680.
doi: 10.1016/j.physd.2012.06.012. |
[7] |
G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent,, Chaos, 21 (2011).
doi: 10.1063/1.3579597. |
[8] |
G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352.
doi: 10.1016/S0167-2789(00)00142-1. |
[9] |
D. Karrasch, Attracting Lagrangian coherent structures on Riemannian manifolds,, Chaos, 25 (2015). Google Scholar |
[10] |
A. M. Mancho, D. Small, S. Wiggins and K. Ide, Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields,, Physica D, 182 (2003), 188.
doi: 10.1016/S0167-2789(03)00152-0. |
[11] |
K. Onu, F. Huhn and G. Haller, LCS Tool: A computational platform for Lagrangian coherent structures,, Journal of Computational Science, 7 (2015), 26.
doi: 10.1016/j.jocs.2014.12.002. |
[12] |
R. Peikert and F. Sadlo, Height Ridge Computation and Filtering for Visualization,, in Visualization Symposium, (2008), 119.
doi: 10.1109/PACIFICVIS.2008.4475467. |
[13] |
B. Schindler, R. Peikert, R. Fuchs and H. Theisel, Ridge Concepts for the Visualization of Lagrangian Coherent Structures,, in Topological Methods in Data Analysis and Visualization II (eds. R. Peikert, (2012), 221.
doi: 10.1007/978-3-642-23175-9_15. |
[14] |
K.-F. Tchon, J. Dompierre, M.-G. Vallet, F. Guibault and R. Camarero, Two-dimensional metric tensor visualization using pseudo-meshes,, Engineering with Computers, 22 (2006), 121.
doi: 10.1007/s00366-006-0012-3. |
[1] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[2] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[3] |
Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104 |
[4] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[5] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[6] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[7] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[8] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[9] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[10] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[11] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[12] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[13] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[14] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[15] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[16] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[17] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[18] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[19] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[20] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]