January  2015, 2(1): 83-93. doi: 10.3934/jcd.2015.2.83

Attraction-based computation of hyperbolic Lagrangian coherent structures

1. 

ETH Zürich, Institute of Mechanical Systems, Leonhardstrasse 21, 8092 Zürich, Switzerland, Switzerland

2. 

ETH Zürich, Institute of Mechanical Systems, Rämistrasse 101, 8092 Zürich, Switzerland

Received  May 2014 Revised  October 2014 Published  August 2015

Recent advances enable the simultaneous computation of both attracting and repelling families of Lagrangian Coherent Structures (LCS) at the same initial or final time of interest. Obtaining LCS positions at intermediate times, however, has been problematic, because either the repelling or the attracting family is unstable with respect to numerical advection in a given time direction. Here we develop a new approach to compute arbitrary positions of hyperbolic LCS in a numerically robust fashion. Our approach only involves the advection of attracting material surfaces, thereby providing accurate LCS tracking at low computational cost. We illustrate the advantages of this approach on a simple model and on a turbulent velocity data set.
Citation: Daniel Karrasch, Mohammad Farazmand, George Haller. Attraction-based computation of hyperbolic Lagrangian coherent structures. Journal of Computational Dynamics, 2015, 2 (1) : 83-93. doi: 10.3934/jcd.2015.2.83
References:
[1]

M. Farazmand, D. Blazevski and G. Haller, Shearless transport barriers in unsteady two-dimensional flows and maps,, Physica D, 278-279 (2014), 278.  doi: 10.1016/j.physd.2014.03.008.  Google Scholar

[2]

M. Farazmand and G. Haller, Computing Lagrangian coherent structures from their variational theory,, Chaos, 22 (2012).  doi: 10.1063/1.3690153.  Google Scholar

[3]

M. Farazmand and G. Haller, Attracting and repelling Lagrangian coherent structures from a single computation,, Chaos, 23 (2013).  doi: 10.1063/1.4800210.  Google Scholar

[4]

M. Farazmand and G. Haller, How coherent are the vortices of two-dimensional turbulence?,, submitted preprint, ().   Google Scholar

[5]

G. Haller, Lagrangian Coherent Structures,, Annual Review of Fluid Mechanics, 47 (2015), 137.  doi: 10.1146/annurev-fluid-010313-141322.  Google Scholar

[6]

G. Haller and F. J. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows,, Physica D, 241 (2012), 1680.  doi: 10.1016/j.physd.2012.06.012.  Google Scholar

[7]

G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent,, Chaos, 21 (2011).  doi: 10.1063/1.3579597.  Google Scholar

[8]

G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352.  doi: 10.1016/S0167-2789(00)00142-1.  Google Scholar

[9]

D. Karrasch, Attracting Lagrangian coherent structures on Riemannian manifolds,, Chaos, 25 (2015).   Google Scholar

[10]

A. M. Mancho, D. Small, S. Wiggins and K. Ide, Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields,, Physica D, 182 (2003), 188.  doi: 10.1016/S0167-2789(03)00152-0.  Google Scholar

[11]

K. Onu, F. Huhn and G. Haller, LCS Tool: A computational platform for Lagrangian coherent structures,, Journal of Computational Science, 7 (2015), 26.  doi: 10.1016/j.jocs.2014.12.002.  Google Scholar

[12]

R. Peikert and F. Sadlo, Height Ridge Computation and Filtering for Visualization,, in Visualization Symposium, (2008), 119.  doi: 10.1109/PACIFICVIS.2008.4475467.  Google Scholar

[13]

B. Schindler, R. Peikert, R. Fuchs and H. Theisel, Ridge Concepts for the Visualization of Lagrangian Coherent Structures,, in Topological Methods in Data Analysis and Visualization II (eds. R. Peikert, (2012), 221.  doi: 10.1007/978-3-642-23175-9_15.  Google Scholar

[14]

K.-F. Tchon, J. Dompierre, M.-G. Vallet, F. Guibault and R. Camarero, Two-dimensional metric tensor visualization using pseudo-meshes,, Engineering with Computers, 22 (2006), 121.  doi: 10.1007/s00366-006-0012-3.  Google Scholar

show all references

References:
[1]

M. Farazmand, D. Blazevski and G. Haller, Shearless transport barriers in unsteady two-dimensional flows and maps,, Physica D, 278-279 (2014), 278.  doi: 10.1016/j.physd.2014.03.008.  Google Scholar

[2]

M. Farazmand and G. Haller, Computing Lagrangian coherent structures from their variational theory,, Chaos, 22 (2012).  doi: 10.1063/1.3690153.  Google Scholar

[3]

M. Farazmand and G. Haller, Attracting and repelling Lagrangian coherent structures from a single computation,, Chaos, 23 (2013).  doi: 10.1063/1.4800210.  Google Scholar

[4]

M. Farazmand and G. Haller, How coherent are the vortices of two-dimensional turbulence?,, submitted preprint, ().   Google Scholar

[5]

G. Haller, Lagrangian Coherent Structures,, Annual Review of Fluid Mechanics, 47 (2015), 137.  doi: 10.1146/annurev-fluid-010313-141322.  Google Scholar

[6]

G. Haller and F. J. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows,, Physica D, 241 (2012), 1680.  doi: 10.1016/j.physd.2012.06.012.  Google Scholar

[7]

G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent,, Chaos, 21 (2011).  doi: 10.1063/1.3579597.  Google Scholar

[8]

G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352.  doi: 10.1016/S0167-2789(00)00142-1.  Google Scholar

[9]

D. Karrasch, Attracting Lagrangian coherent structures on Riemannian manifolds,, Chaos, 25 (2015).   Google Scholar

[10]

A. M. Mancho, D. Small, S. Wiggins and K. Ide, Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields,, Physica D, 182 (2003), 188.  doi: 10.1016/S0167-2789(03)00152-0.  Google Scholar

[11]

K. Onu, F. Huhn and G. Haller, LCS Tool: A computational platform for Lagrangian coherent structures,, Journal of Computational Science, 7 (2015), 26.  doi: 10.1016/j.jocs.2014.12.002.  Google Scholar

[12]

R. Peikert and F. Sadlo, Height Ridge Computation and Filtering for Visualization,, in Visualization Symposium, (2008), 119.  doi: 10.1109/PACIFICVIS.2008.4475467.  Google Scholar

[13]

B. Schindler, R. Peikert, R. Fuchs and H. Theisel, Ridge Concepts for the Visualization of Lagrangian Coherent Structures,, in Topological Methods in Data Analysis and Visualization II (eds. R. Peikert, (2012), 221.  doi: 10.1007/978-3-642-23175-9_15.  Google Scholar

[14]

K.-F. Tchon, J. Dompierre, M.-G. Vallet, F. Guibault and R. Camarero, Two-dimensional metric tensor visualization using pseudo-meshes,, Engineering with Computers, 22 (2006), 121.  doi: 10.1007/s00366-006-0012-3.  Google Scholar

[1]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[10]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[11]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[16]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[19]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

 Impact Factor: 

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (10)

[Back to Top]