Citation: |
[1] |
J. Baillieul, The geometry of controlled mechanical systems, Mathematical control theory, Springer, New York, (1999), 322-354. |
[2] |
R. Benito, M. de León and D. Martín de Diego, Higher-order discrete lagrangian mechanics, Int. Journal of Geometric Methods in Modern Physics, 3 (2006), 421-436.doi: 10.1142/S0219887806001235. |
[3] |
A. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics Series, Springer-Verlag, New-York, 24, 2003.doi: 10.1007/b97376. |
[4] |
A. M. Bloch and P. E. Crouch, Reduction of Euler Lagrange problems for constrained variational problems and relation with optimal control problems, Proceedings of 33rd IEEE Conference on Decision and Control, 3 (1994), 2584-2590.doi: 10.1109/CDC.1994.411534. |
[5] |
A. M. Bloch and P. E. Crouch, On the equivalence of higher order variational problems and optimal control problems, Proceedings of 35rd IEEE Conference on Decision and Control, 2 (1996), 1648-1653.doi: 10.1109/CDC.1996.572780. |
[6] |
A. M. Bloch, I. I. Hussein, M. Leok and A. K. Sanyal, Geometric structure-preserving optimal control of a rigid body, Journal of Dynamical and Control Systems, 15 (2009), 307-330.doi: 10.1007/s10883-009-9071-2. |
[7] |
N. Borda, J. Fernandez and S. Grillo, Discrete second order constrained Lagrangian systems: First results, Journal Geometric Mechanics, 5 (2013), 381-397.doi: 10.3934/jgm.2013.5.381. |
[8] |
N. Bou-Rabee and J. E. Marsden, Hamilton-pontryagin integrators on Lie groups, Foundations of Computational Mathematics, 9 (2009), 197-219.doi: 10.1007/s10208-008-9030-4. |
[9] |
C. Burnett, D. Holm and D. Meier, Geometric integrators for higher-order mechanics on Lie groups, Proc. R. Soc. A., 469 (2013), 20130249, 24pp.doi: 10.1098/rspa.2013.0249. |
[10] |
F. Bullo and A. Lewis, Geometric control of mechanical systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics, Springer Verlang, New York, 2005.doi: 10.1007/978-1-4899-7276-7. |
[11] |
J. A. Cadzow, Discrete Calculus of Variations, Int. J. Control, 11 (1970), 393-407. |
[12] |
C. M. Campos, O. Junge and S. Ober-Blöbaum, Higher order variational time discretization of optimal control problems, In: 20th International Symposium on Mathematical Theory of Networks and Systems, Melbourne, 2012. |
[13] |
C. M. Campos, High Order Variational Integrators: A Polynomial Approach, Advances in Differential Equations and Applications SEMA SIMAI Springer Series, 4 (2014), 249-258.doi: 10.1007/978-3-319-06953-1_24. |
[14] |
C. M. Campos, S. Ober-Blöbaum and E. Trélat, High order variational integrators in the optimal control of mechanical systems, Discrete and Continuous Dynamical Systems - Series A, 35 (2015), 4193-4223.doi: 10.3934/dcds.2015.35.4193. |
[15] |
A. Castro and J. Koiller, On the dynamic Markov-Dubins problem: From path planning in robotics and biolocomotion to computational anatomy, Regul. Chaotic Dyn., 18 (2013), 1-20.doi: 10.1134/S1560354713010012. |
[16] |
H. Cendra, J. Marsden and T. Ratiu, Lagrangian reduction by stages, Memoirs of the American Mathematical Society, 152 (2001), x+108 pp.doi: 10.1090/memo/0722. |
[17] |
J. Cortés, Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lec. Notes in Math., 1793, Springer-Verlag, Berlin, 2002.doi: 10.1007/b84020. |
[18] |
M. Chyba, E. Hairer and G. Vilmart, The role of symplectic integrators in optimal control, Opt. Control Appl. Method, 30 (2009), 367-382.doi: 10.1002/oca.855. |
[19] |
L. Colombo, F. Jiménez and D. Martín de Diego, Discrete second-order euler-poincaré equations. An application to optimal control, International Journal of Geometric Methods in Modern Physics, 9 (2012), 1250037, 20 pp.doi: 10.1142/S0219887812500375. |
[20] |
L. Colombo and D. Martín de Diego, Higher-order variational problems on Lie groups and optimal control applications, J. Geom. Mech., 6 (2014), 451-478.doi: 10.3934/jgm.2014.6.451. |
[21] |
L. Colombo, D. Martín de Diego and M. Zuccalli, Optimal control of underactuated mechanical systems: A geometric approach, Journal of Mathematical Physics, 51 (2010), 083519, 24 pp.doi: 10.1063/1.3456158. |
[22] |
L. Colombo, D. Martín de Diego and M. Zuccalli, On variational integrators for optimal control of mechanical systems, RACSAM Rev. R. Acad. Cienc. Ser A. Mat, 106 (2012), 161-171.doi: 10.1007/s13398-011-0032-8. |
[23] |
L. Colombo L, D. Martín de Diego and M. Zuccalli, Higher-order variational problems with constraints, Journal of Mathematical Physics, 54 (2013), 093507, 17pp.doi: 10.1063/1.4820817. |
[24] |
J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete and Continuous Dynamical Systems - Series A, 24 (2009), 213-271.doi: 10.3934/dcds.2009.24.213. |
[25] |
J. Fernandez and M. Zuccalli, A geometric approach to discrete connections on principal bundles, J. Geom. Mech., 5 (2013), 433-444.doi: 10.3934/jgm.2013.5.433. |
[26] |
F. Gay-Balmaz, D. Holm and T. Ratiu, Higher order Lagrange-Poincaré, and Hamilton-Poincaré reductions, Bulletin of the Brazialian Mathematical Society, 42 (2011), 579-606.doi: 10.1007/s00574-011-0030-7. |
[27] |
F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Geometric dynamics of optimization, Comm. Math. Sci., 11 (2013), 163-231.doi: 10.4310/CMS.2013.v11.n1.a6. |
[28] |
F. Gay-Balmaz, D. D. Holm, D. M. Meier, T. S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems, Communications in Mathematical Physics, 309 (2012), 413-458.doi: 10.1007/s00220-011-1313-y. |
[29] |
S. Grillo, M. Zuccalli, Variational reduction of Lagrangian systems with general constraints, J. Geom. Mech., 4 (2012), 49-88.doi: 10.3934/jgm.2012.4.49. |
[30] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 31, 2002.doi: 10.1007/978-3-662-05018-7. |
[31] |
D. D. Holm, Geometric Mechanics. Part I and II, Imperial College Press, London; distributed by World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. |
[32] |
A. Iserles, H. Munthe-Kaas, S. Norsett and A. Zanna, Lie-group methods, Acta Numerica, 9 (2000), 215-365.doi: 10.1017/S0962492900002154. |
[33] |
F. Jiménez, M. de León and D. Martín de Diego, Hamiltonian dynamics and constrained variational calculus: Continuous and discrete settings, J. Phys A, 45 (2012), 205204, 29pp.doi: 10.1088/1751-8113/45/20/205204. |
[34] |
F. Jiménez, M. Kobilarov and D. Martín de Diego, Discrete variational optimal control, Journal of Nonlinear Science, 23 (2013), 393-426.doi: 10.1007/s00332-012-9156-z. |
[35] |
F. Jiménez and D. Martín de Diego, A geometric approach to Discrete mechanics for optimal control theory, Proceedings of the IEEE Conference on Decision and Control, Atlanta, Georgia, USA, (2010), 5426-5431. |
[36] |
M. Kobilarov, Discrete Geometric Motion Control of Autonomous Vehicles, Thesis, University of Southern California, Computer Science, 2008. |
[37] |
M. Kobilarov and J. Marsden, Discrete geometric optimal control on lie groups, IEEE Transactions on Robotics, 27 (2011), 641-655.doi: 10.1109/TRO.2011.2139130. |
[38] |
W.-S. Koon, Reduction, Reconstruction and Optimal Control for Nonholonomic Mechanical Systems with Symmetry, PhD thesis, University of California, Berkeley, 1997. |
[39] |
T. Lee, M. Leok and N. H. McClamroch, Optimal Attitude Control of a Rigid Body using Geometrically Exact Computations on $SO(3)$, Journal of Dynamical and Control Systems, 14 (2008), 465-487.doi: 10.1007/s10883-008-9047-7. |
[40] |
M. Leok, Foundations of Computational Geometric Mechanics, Control and Dynamical Systems, Thesis, California Institute of Technology, 2004. Available in http://www.math.ucsd.edu/~mleok/. |
[41] |
M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, North-Holland Mathematical Studies, North-Holland, Amsterdam, 12, 1985. |
[42] |
A. Lewis and R. Murray, Variational principles for constrained systems: Theory and experiment, Int. J. Nonlinear Mechanics, 30 (1995), 793-815.doi: 10.1016/0020-7462(95)00024-0. |
[43] |
S. Leyendecker, S. Ober-Blöbaum, J. Marsden and M. Ortiz, Discrete mechanics and optimal control for constrained systems, Optim. Control, Appl. Methods, 31 (2010), 505-528.doi: 10.1002/oca.912. |
[44] |
J. C. Marrero, D. Martín de Diego D and E. Martínez, Discrete Lagrangian and Hamiltonian Mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348.doi: 10.1088/0951-7715/19/6/006. |
[45] |
J. C. Marrero, D. Martín de Diego and A. Stern, Symplectic groupies and discrete constrained Lagrangian mechanics, Discrete and Continuous Mechanical Systems, Serie A., 35 (2015), 367-397. |
[46] |
J. Marsden, S. Pekarsky and S. Shkoller, Symmetry reduction of discrete Lagrangian mechanics on Lie groups, J. Geom. Phys., 36 (2000), 140-151.doi: 10.1016/S0393-0440(00)00018-8. |
[47] |
J. E. Marsden and J. M. Wendlandt, Mechanical integrators derived from a discrete variational principle, Physica D, 106 (1997), 223-246.doi: 10.1016/S0167-2789(97)00051-1. |
[48] |
J. Marsden and M. West, Discrete Mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.doi: 10.1017/S096249290100006X. |
[49] |
D. Meier, Invariant Higher-Order Variational Problems: Reduction, Geometry and Applications, Ph.D thesis, Imperial College London, 2013. |
[50] |
S. Ober-Blöbaum, O. Junge and J. Marsden, Discrete mechanics and optimal control: An analysis, ESAIM: COCV, 17 (2011), 322-352.doi: 10.1051/cocv/2010012. |