-
Previous Article
A kernel-based method for data-driven koopman spectral analysis
- JCD Home
- This Issue
-
Next Article
Variational integrators for mechanical control systems with symmetries
Computing continuous and piecewise affine lyapunov functions for nonlinear systems
1. | School of Science and Engineering, Reykjavik University, Menntavegi 1, Reykjavik, IS-101 |
2. | School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, New South Wales 2308 |
3. | School of Mathematics and Physics, Chinese University of Geosciences (Wuhan), 430074, Wuhan |
References:
[1] |
R. Baier, L. Grüne and S. Hafstein, Linear programming based Lyapunov function computation for differential inclusions,, Discrete and Continuous Dynamical Systems Series B, 17 (2012), 33.
doi: 10.3934/dcdsb.2012.17.33. |
[2] |
H. Ban and W. Kalies, A computational approach to Conley's decomposition theorem,, Journal of Computational and Nonlinear Dynamics, 1 (2006), 312.
doi: 10.1115/1.2338651. |
[3] |
J. Björnsson, P. Giesl and S. Hafstein, Algorithmic verification of approximations to complete Lyapunov functions,, In Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, (2014), 1181. Google Scholar |
[4] |
J. Björnsson, P. Giesl, S. Hafstein, C. M. Kellett and H. Li, Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction,, In Proceedings of the 53rd IEEE Conference on Decision and Control, (2014), 5506. Google Scholar |
[5] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions,, Number 1904 in Lecture Notes in Mathematics. Springer, (1904).
|
[6] |
P. Giesl and S. Hafstein, Existence of piecewise affine Lyapunov functions in two dimensions,, J. Math. Anal. Appl., 371 (2010), 233.
doi: 10.1016/j.jmaa.2010.05.009. |
[7] |
P. Giesl and S. Hafstein, Construction of Lyapunov functions for nonlinear planar systems by linear programming,, Journal of Mathematical Analysis and Applications, 388 (2012), 463.
doi: 10.1016/j.jmaa.2011.10.047. |
[8] |
P. Giesl and S. Hafstein, Existence of piecewise affine Lyapunov functions in arbitrary dimensions,, Discrete and Contin. Dyn. Syst., 32 (2012), 3539.
doi: 10.3934/dcds.2012.32.3539. |
[9] |
P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems,, Journal of Mathematical Analysis and Applications, 410 (2014), 292.
doi: 10.1016/j.jmaa.2013.08.014. |
[10] |
P. Giesl and S. Hafstein, Computation and verification of Lyapunov functions,, SIAM J. Appl. Dyn. Syst., 14 (2015), 1663.
doi: 10.1137/140988802. |
[11] |
P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions,, Discrete and Continuous Dynamical Systems Series B, 20 (2015), 2291.
doi: 10.3934/dcdsb.2015.20.2291. |
[12] |
S. Hafstein, An Algorithm for Constructing Lyapunov Functions,, Electronic Journal of Differential Equations Mongraphs, (2007). Google Scholar |
[13] |
S. Hafstein, C. M. Kellett and H. Li, Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction,, In Proceedings of the American Control Conference, (2014), 548.
doi: 10.1109/ACC.2014.6858660. |
[14] |
W. Hahn, Stability of Motion,, Springer-Verlag, (1967).
|
[15] |
T. Johansen, Computation of Lyapunov functions for smooth nonlinear systems using convex optimization,, Automatica, 36 (2000), 1617.
doi: 10.1016/S0005-1098(00)00088-1. |
[16] |
W. Kalies, K. Mischaikow and R. VanderVorst, An algorithmic approach to chain recurrence,, Foundations of Computational Mathematics, 5 (2005), 409.
doi: 10.1007/s10208-004-0163-9. |
[17] |
C. M. Kellett, A compendium of comparsion function results,, Mathematics of Controls, 26 (2014), 339.
doi: 10.1007/s00498-014-0128-8. |
[18] |
C. M. Kellett, Classical converse theorems in Lyapunov's second method,, Discrete and Continuous Dynamical Systems Series B, 20 (2015), 2333.
doi: 10.3934/dcdsb.2015.20.2333. |
[19] |
J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion,, Chechoslovak Mathematics Journal, 81 (1956), 217. Google Scholar |
[20] |
H. Li, S. Hafstein and C. M. Kellett, Computation of continuous and piecewise affine Lyapunov functions for discrete-time systems,, J Differ Equ Appl, 21 (2015), 486.
doi: 10.1080/10236198.2015.1025069. |
[21] |
A. M. Lyapunov, The general problem of the stability of motion,, Math. Soc. of Kharkov, 55 (1992), 521.
doi: 10.1080/00207179208934253. |
[22] |
S. Marinosson, Lyapunov function construction for ordinary differential equations with linear programming,, Dynamical Systems, 17 (2002), 137.
doi: 10.1080/0268111011011847. |
[23] |
J. L. Massera, On Liapounoff's conditions of stability,, Annals of Mathematics, 50 (1949), 705.
doi: 10.2307/1969558. |
[24] |
A. Papachristodoulou and S. Prajna, The construction of Lyapunov functions using the sum of squares decomposition,, In Proceedings of the 41st IEEE Conference on Decision and Control, 3 (2002), 3482.
doi: 10.1109/CDC.2002.1184414. |
[25] |
M. Peet and A. Papachristodoulou, A converse sum of squares Lyapunov result with a degree bound,, IEEE Transactions on Automatic Control, 57 (2012), 2281.
doi: 10.1109/TAC.2012.2190163. |
[26] |
N. Rouche, P. Habets and M. Laloy, Stability Theory by Liapunov's Direct Method,, Springer-Verlag, (1977).
|
[27] |
E. D. Sontag, Comments on integral variants of ISS,, Systems and Control Letters, 34 (1998), 93.
doi: 10.1016/S0167-6911(98)00003-6. |
[28] |
A. R. Teel and L. Praly, A smooth Lyapunov function from a class-$\mathcal{KL}$ estimate involving two positive semidefinite functions,, ESAIM Control Optim. Calc. Var., 5 (2000), 313.
doi: 10.1051/cocv:2000113. |
[29] |
T. Yoshizawa, On the stability of solutions of a system of differential equations,, Memoirs of the College of Science, 29 (1955), 27.
|
[30] |
T. Yoshizawa, Stability Theory by Liapunov's Second Method,, Mathematical Society of Japan, (1966).
|
show all references
References:
[1] |
R. Baier, L. Grüne and S. Hafstein, Linear programming based Lyapunov function computation for differential inclusions,, Discrete and Continuous Dynamical Systems Series B, 17 (2012), 33.
doi: 10.3934/dcdsb.2012.17.33. |
[2] |
H. Ban and W. Kalies, A computational approach to Conley's decomposition theorem,, Journal of Computational and Nonlinear Dynamics, 1 (2006), 312.
doi: 10.1115/1.2338651. |
[3] |
J. Björnsson, P. Giesl and S. Hafstein, Algorithmic verification of approximations to complete Lyapunov functions,, In Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, (2014), 1181. Google Scholar |
[4] |
J. Björnsson, P. Giesl, S. Hafstein, C. M. Kellett and H. Li, Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction,, In Proceedings of the 53rd IEEE Conference on Decision and Control, (2014), 5506. Google Scholar |
[5] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions,, Number 1904 in Lecture Notes in Mathematics. Springer, (1904).
|
[6] |
P. Giesl and S. Hafstein, Existence of piecewise affine Lyapunov functions in two dimensions,, J. Math. Anal. Appl., 371 (2010), 233.
doi: 10.1016/j.jmaa.2010.05.009. |
[7] |
P. Giesl and S. Hafstein, Construction of Lyapunov functions for nonlinear planar systems by linear programming,, Journal of Mathematical Analysis and Applications, 388 (2012), 463.
doi: 10.1016/j.jmaa.2011.10.047. |
[8] |
P. Giesl and S. Hafstein, Existence of piecewise affine Lyapunov functions in arbitrary dimensions,, Discrete and Contin. Dyn. Syst., 32 (2012), 3539.
doi: 10.3934/dcds.2012.32.3539. |
[9] |
P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems,, Journal of Mathematical Analysis and Applications, 410 (2014), 292.
doi: 10.1016/j.jmaa.2013.08.014. |
[10] |
P. Giesl and S. Hafstein, Computation and verification of Lyapunov functions,, SIAM J. Appl. Dyn. Syst., 14 (2015), 1663.
doi: 10.1137/140988802. |
[11] |
P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions,, Discrete and Continuous Dynamical Systems Series B, 20 (2015), 2291.
doi: 10.3934/dcdsb.2015.20.2291. |
[12] |
S. Hafstein, An Algorithm for Constructing Lyapunov Functions,, Electronic Journal of Differential Equations Mongraphs, (2007). Google Scholar |
[13] |
S. Hafstein, C. M. Kellett and H. Li, Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction,, In Proceedings of the American Control Conference, (2014), 548.
doi: 10.1109/ACC.2014.6858660. |
[14] |
W. Hahn, Stability of Motion,, Springer-Verlag, (1967).
|
[15] |
T. Johansen, Computation of Lyapunov functions for smooth nonlinear systems using convex optimization,, Automatica, 36 (2000), 1617.
doi: 10.1016/S0005-1098(00)00088-1. |
[16] |
W. Kalies, K. Mischaikow and R. VanderVorst, An algorithmic approach to chain recurrence,, Foundations of Computational Mathematics, 5 (2005), 409.
doi: 10.1007/s10208-004-0163-9. |
[17] |
C. M. Kellett, A compendium of comparsion function results,, Mathematics of Controls, 26 (2014), 339.
doi: 10.1007/s00498-014-0128-8. |
[18] |
C. M. Kellett, Classical converse theorems in Lyapunov's second method,, Discrete and Continuous Dynamical Systems Series B, 20 (2015), 2333.
doi: 10.3934/dcdsb.2015.20.2333. |
[19] |
J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion,, Chechoslovak Mathematics Journal, 81 (1956), 217. Google Scholar |
[20] |
H. Li, S. Hafstein and C. M. Kellett, Computation of continuous and piecewise affine Lyapunov functions for discrete-time systems,, J Differ Equ Appl, 21 (2015), 486.
doi: 10.1080/10236198.2015.1025069. |
[21] |
A. M. Lyapunov, The general problem of the stability of motion,, Math. Soc. of Kharkov, 55 (1992), 521.
doi: 10.1080/00207179208934253. |
[22] |
S. Marinosson, Lyapunov function construction for ordinary differential equations with linear programming,, Dynamical Systems, 17 (2002), 137.
doi: 10.1080/0268111011011847. |
[23] |
J. L. Massera, On Liapounoff's conditions of stability,, Annals of Mathematics, 50 (1949), 705.
doi: 10.2307/1969558. |
[24] |
A. Papachristodoulou and S. Prajna, The construction of Lyapunov functions using the sum of squares decomposition,, In Proceedings of the 41st IEEE Conference on Decision and Control, 3 (2002), 3482.
doi: 10.1109/CDC.2002.1184414. |
[25] |
M. Peet and A. Papachristodoulou, A converse sum of squares Lyapunov result with a degree bound,, IEEE Transactions on Automatic Control, 57 (2012), 2281.
doi: 10.1109/TAC.2012.2190163. |
[26] |
N. Rouche, P. Habets and M. Laloy, Stability Theory by Liapunov's Direct Method,, Springer-Verlag, (1977).
|
[27] |
E. D. Sontag, Comments on integral variants of ISS,, Systems and Control Letters, 34 (1998), 93.
doi: 10.1016/S0167-6911(98)00003-6. |
[28] |
A. R. Teel and L. Praly, A smooth Lyapunov function from a class-$\mathcal{KL}$ estimate involving two positive semidefinite functions,, ESAIM Control Optim. Calc. Var., 5 (2000), 313.
doi: 10.1051/cocv:2000113. |
[29] |
T. Yoshizawa, On the stability of solutions of a system of differential equations,, Memoirs of the College of Science, 29 (1955), 27.
|
[30] |
T. Yoshizawa, Stability Theory by Liapunov's Second Method,, Mathematical Society of Japan, (1966).
|
[1] |
Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i |
[2] |
Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631 |
[3] |
Peter Giesl, Sigurdur Hafstein. Review on computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2291-2331. doi: 10.3934/dcdsb.2015.20.2291 |
[4] |
Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116 |
[5] |
Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39 |
[6] |
Peter Giesl, Sigurdur Hafstein. Existence of piecewise linear Lyapunov functions in arbitrary dimensions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3539-3565. doi: 10.3934/dcds.2012.32.3539 |
[7] |
Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control & Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231 |
[8] |
Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192 |
[9] |
Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020048 |
[10] |
Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 695-717. doi: 10.3934/dcdsb.2018203 |
[11] |
Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591 |
[12] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021007 |
[13] |
Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172 |
[14] |
Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 |
[15] |
Marat Akhmet, Duygu Aruğaslan. Lyapunov-Razumikhin method for differential equations with piecewise constant argument. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 457-466. doi: 10.3934/dcds.2009.25.457 |
[16] |
Dag Lukkassen, Annette Meidell, Peter Wall. On the conjugate of periodic piecewise harmonic functions. Networks & Heterogeneous Media, 2008, 3 (3) : 633-646. doi: 10.3934/nhm.2008.3.633 |
[17] |
F. M. G. Magpantay, A. R. Humphries. Generalised Lyapunov-Razumikhin techniques for scalar state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (1) : 85-104. doi: 10.3934/dcdss.2020005 |
[18] |
Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080 |
[19] |
Ian D. Morris. Ergodic optimization for generic continuous functions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 383-388. doi: 10.3934/dcds.2010.27.383 |
[20] |
Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]