- Previous Article
- JCD Home
- This Issue
-
Next Article
Computing continuous and piecewise affine lyapunov functions for nonlinear systems
A kernel-based method for data-driven koopman spectral analysis
1. | United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06118, United States |
2. | Dept. of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 |
3. | Department of Chemical and Biological Engineering & PACM, Princeton University, Princeton, NJ 08544, United States |
References:
[1] |
S. Bagheri, Koopman-mode decomposition of the cylinder wake,, Journal of Fluid Mechanics, 726 (2013), 596.
doi: 10.1017/jfm.2013.249. |
[2] |
S. Bagheri, Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum,, Physics of Fluids, 26 (2014).
doi: 10.1063/1.4895898. |
[3] |
G. Baudat and F. Anouar, Kernel-based methods and function approximation,, In Proceedings of the International Joint Conference on Neural Networks, 2 (2001), 1244.
doi: 10.1109/IJCNN.2001.939539. |
[4] |
C. M. Bishop et al, Pattern Recognition and Machine Learning,, Springer, (2006).
doi: 10.1007/978-0-387-45528-0. |
[5] |
J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Courier Dover Publications, (2001).
|
[6] |
M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012).
doi: 10.1063/1.4772195. |
[7] |
C. J. Burges, A tutorial on support vector machines for pattern recognition,, Data Mining and Knowledge Discovery, 2 (1998), 121. Google Scholar |
[8] |
A. Chatterjee, An introduction to the proper orthogonal decomposition,, Current Science, 78 (2000), 808. Google Scholar |
[9] |
K. K. Chen, J. H. Tu and C. W. Rowley, Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses,, Journal of Nonlinear Science, 22 (2012), 887.
doi: 10.1007/s00332-012-9130-9. |
[10] |
R. R. Coifman and S. Lafon, Diffusion maps,, Applied and Computational Harmonic Analysis, 21 (2006), 5.
doi: 10.1016/j.acha.2006.04.006. |
[11] |
N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods,, Cambridge University Press, (2000).
doi: 10.1017/CBO9780511801389. |
[12] |
C. E. Elmer and E. S. Van Vleck, Spatially discrete FitzHugh-Nagumo equations,, SIAM Journal on Applied Mathematics, 65 (2005), 1153.
doi: 10.1137/S003613990343687X. |
[13] |
P. Gaspard and S. Tasaki, Liouvillian dynamics of the {Hopf} bifurcation,, Physical Review E, 64 (2001).
doi: 10.1103/PhysRevE.64.056232. |
[14] |
M. S. Hemati, M. O. Williams and C. W. Rowley, Dynamic mode decomposition for large and streaming datasets,, Physics of Fluids, 26 (2014).
doi: 10.1063/1.4901016. |
[15] |
P. Holmes, J. L. Lumley, G. Berkooz and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry,, Cambridge University Press, (2012).
doi: 10.1017/CBO9780511919701. |
[16] |
M. R. Jovanović, P. J. Schmid and J. W. Nichols, Sparsity-promoting dynamic mode decomposition,, Physics of Fluids, 26 (2014). Google Scholar |
[17] |
J.-N. Juang, Applied System Identification,, Prentice Hall, (1994). Google Scholar |
[18] |
B. O. Koopman and J. von Neumann, Dynamical systems of continuous spectra,, Proceedings of the National Academy of Sciences of the United States of America, 18 (1932), 255.
doi: 10.1073/pnas.18.3.255. |
[19] |
B. O. Koopman, Hamiltonian systems and transformation in Hilbert space,, Proceedings of the National Academy of Sciences of the United States of America, 17 (1931), 315.
doi: 10.1073/pnas.17.5.315. |
[20] |
J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction,, Springer, (2007).
doi: 10.1007/978-0-387-39351-3. |
[21] |
R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, volume 6., SIAM, (1998).
doi: 10.1137/1.9780898719628. |
[22] |
A. Mauroy and I. Mezic, A spectral operator-theoretic framework for global stability,, In 52nd IEEE Conference on Decision and Control, (2013), 5234.
doi: 10.1109/CDC.2013.6760712. |
[23] |
I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions,, Nonlinear Dynamics, 41 (2005), 309.
doi: 10.1007/s11071-005-2824-x. |
[24] |
I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator,, Annual Review of Fluid Mechanics, 45 (2013), 357.
doi: 10.1146/annurev-fluid-011212-140652. |
[25] |
C. E. Rasmussen, Gaussian Processes for Machine Learning,, MIT Press, (2006).
|
[26] |
C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter and D. S. Henningson, Spectral analysis of nonlinear flows,, Journal of Fluid Mechanics, 641 (2009), 115.
doi: 10.1017/S0022112009992059. |
[27] |
P. J. Schmid, Dynamic mode decomposition of numerical and experimental data,, Journal of Fluid Mechanics, 656 (2010), 5.
doi: 10.1017/S0022112010001217. |
[28] |
P. J. Schmid, D. Violato and F. Scarano, Decomposition of time-resolved tomographic PIV,, Experiments in Fluids, 52 (2012), 1567.
doi: 10.1007/s00348-012-1266-8. |
[29] |
P. J. Schmid, L. Li, M. P. Juniper and O. Pust, Applications of the dynamic mode decomposition,, Theoretical and Computational Fluid Dynamics, 25 (2011), 249.
doi: 10.1007/s00162-010-0203-9. |
[30] |
B. Scholkopf, The kernel trick for distances,, Advances in Neural Information Processing Systems, (2001), 301. Google Scholar |
[31] |
L. Sirovich, Turbulence and the dynamics of coherent structures. part I: Coherent structures,, Quarterly of applied mathematics, 45 (1987), 561.
|
[32] |
G. Tissot, L. Cordier, N. Benard and B. R. Noack, Model reduction using dynamic mode decomposition,, Comptes Rendus Mćcanique, 342 (2014), 410.
doi: 10.1016/j.crme.2013.12.011. |
[33] |
J. H. Tu, C. W. Rowley, J. N. Kutz and J. K. Shang, Toward compressed DMD: Spectral analysis of fluid flows using sub-Nyquist-rate PIV data,, Experiments in Fluids, 55 (2014), 1. Google Scholar |
[34] |
J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz, On dynamic mode decomposition: Theory and applications,, Journal of Computational Dynamics, 1 (2014), 391.
doi: 10.3934/jcd.2014.1.391. |
[35] |
M. O. Williams, I. G. Kevrekidis and C. W. Rowley, A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,, Journal of Nonlinear Science, 25 (2015), 1307.
doi: 10.1007/s00332-015-9258-5. |
[36] |
A. Wynn, D. S. Pearson, B. Ganapathisubramani and P. J. Goulart, Optimal mode decomposition for unsteady flows,, Journal of Fluid Mechanics, 733 (2013), 473.
doi: 10.1017/jfm.2013.426. |
show all references
References:
[1] |
S. Bagheri, Koopman-mode decomposition of the cylinder wake,, Journal of Fluid Mechanics, 726 (2013), 596.
doi: 10.1017/jfm.2013.249. |
[2] |
S. Bagheri, Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum,, Physics of Fluids, 26 (2014).
doi: 10.1063/1.4895898. |
[3] |
G. Baudat and F. Anouar, Kernel-based methods and function approximation,, In Proceedings of the International Joint Conference on Neural Networks, 2 (2001), 1244.
doi: 10.1109/IJCNN.2001.939539. |
[4] |
C. M. Bishop et al, Pattern Recognition and Machine Learning,, Springer, (2006).
doi: 10.1007/978-0-387-45528-0. |
[5] |
J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Courier Dover Publications, (2001).
|
[6] |
M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012).
doi: 10.1063/1.4772195. |
[7] |
C. J. Burges, A tutorial on support vector machines for pattern recognition,, Data Mining and Knowledge Discovery, 2 (1998), 121. Google Scholar |
[8] |
A. Chatterjee, An introduction to the proper orthogonal decomposition,, Current Science, 78 (2000), 808. Google Scholar |
[9] |
K. K. Chen, J. H. Tu and C. W. Rowley, Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses,, Journal of Nonlinear Science, 22 (2012), 887.
doi: 10.1007/s00332-012-9130-9. |
[10] |
R. R. Coifman and S. Lafon, Diffusion maps,, Applied and Computational Harmonic Analysis, 21 (2006), 5.
doi: 10.1016/j.acha.2006.04.006. |
[11] |
N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods,, Cambridge University Press, (2000).
doi: 10.1017/CBO9780511801389. |
[12] |
C. E. Elmer and E. S. Van Vleck, Spatially discrete FitzHugh-Nagumo equations,, SIAM Journal on Applied Mathematics, 65 (2005), 1153.
doi: 10.1137/S003613990343687X. |
[13] |
P. Gaspard and S. Tasaki, Liouvillian dynamics of the {Hopf} bifurcation,, Physical Review E, 64 (2001).
doi: 10.1103/PhysRevE.64.056232. |
[14] |
M. S. Hemati, M. O. Williams and C. W. Rowley, Dynamic mode decomposition for large and streaming datasets,, Physics of Fluids, 26 (2014).
doi: 10.1063/1.4901016. |
[15] |
P. Holmes, J. L. Lumley, G. Berkooz and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry,, Cambridge University Press, (2012).
doi: 10.1017/CBO9780511919701. |
[16] |
M. R. Jovanović, P. J. Schmid and J. W. Nichols, Sparsity-promoting dynamic mode decomposition,, Physics of Fluids, 26 (2014). Google Scholar |
[17] |
J.-N. Juang, Applied System Identification,, Prentice Hall, (1994). Google Scholar |
[18] |
B. O. Koopman and J. von Neumann, Dynamical systems of continuous spectra,, Proceedings of the National Academy of Sciences of the United States of America, 18 (1932), 255.
doi: 10.1073/pnas.18.3.255. |
[19] |
B. O. Koopman, Hamiltonian systems and transformation in Hilbert space,, Proceedings of the National Academy of Sciences of the United States of America, 17 (1931), 315.
doi: 10.1073/pnas.17.5.315. |
[20] |
J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction,, Springer, (2007).
doi: 10.1007/978-0-387-39351-3. |
[21] |
R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, volume 6., SIAM, (1998).
doi: 10.1137/1.9780898719628. |
[22] |
A. Mauroy and I. Mezic, A spectral operator-theoretic framework for global stability,, In 52nd IEEE Conference on Decision and Control, (2013), 5234.
doi: 10.1109/CDC.2013.6760712. |
[23] |
I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions,, Nonlinear Dynamics, 41 (2005), 309.
doi: 10.1007/s11071-005-2824-x. |
[24] |
I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator,, Annual Review of Fluid Mechanics, 45 (2013), 357.
doi: 10.1146/annurev-fluid-011212-140652. |
[25] |
C. E. Rasmussen, Gaussian Processes for Machine Learning,, MIT Press, (2006).
|
[26] |
C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter and D. S. Henningson, Spectral analysis of nonlinear flows,, Journal of Fluid Mechanics, 641 (2009), 115.
doi: 10.1017/S0022112009992059. |
[27] |
P. J. Schmid, Dynamic mode decomposition of numerical and experimental data,, Journal of Fluid Mechanics, 656 (2010), 5.
doi: 10.1017/S0022112010001217. |
[28] |
P. J. Schmid, D. Violato and F. Scarano, Decomposition of time-resolved tomographic PIV,, Experiments in Fluids, 52 (2012), 1567.
doi: 10.1007/s00348-012-1266-8. |
[29] |
P. J. Schmid, L. Li, M. P. Juniper and O. Pust, Applications of the dynamic mode decomposition,, Theoretical and Computational Fluid Dynamics, 25 (2011), 249.
doi: 10.1007/s00162-010-0203-9. |
[30] |
B. Scholkopf, The kernel trick for distances,, Advances in Neural Information Processing Systems, (2001), 301. Google Scholar |
[31] |
L. Sirovich, Turbulence and the dynamics of coherent structures. part I: Coherent structures,, Quarterly of applied mathematics, 45 (1987), 561.
|
[32] |
G. Tissot, L. Cordier, N. Benard and B. R. Noack, Model reduction using dynamic mode decomposition,, Comptes Rendus Mćcanique, 342 (2014), 410.
doi: 10.1016/j.crme.2013.12.011. |
[33] |
J. H. Tu, C. W. Rowley, J. N. Kutz and J. K. Shang, Toward compressed DMD: Spectral analysis of fluid flows using sub-Nyquist-rate PIV data,, Experiments in Fluids, 55 (2014), 1. Google Scholar |
[34] |
J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz, On dynamic mode decomposition: Theory and applications,, Journal of Computational Dynamics, 1 (2014), 391.
doi: 10.3934/jcd.2014.1.391. |
[35] |
M. O. Williams, I. G. Kevrekidis and C. W. Rowley, A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,, Journal of Nonlinear Science, 25 (2015), 1307.
doi: 10.1007/s00332-015-9258-5. |
[36] |
A. Wynn, D. S. Pearson, B. Ganapathisubramani and P. J. Goulart, Optimal mode decomposition for unsteady flows,, Journal of Fluid Mechanics, 733 (2013), 473.
doi: 10.1017/jfm.2013.426. |
[1] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[2] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[3] |
Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 |
[4] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[5] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[6] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[7] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[8] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[9] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[10] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[11] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[12] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[13] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[14] |
Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024 |
[15] |
Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021013 |
[16] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[17] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[18] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446 |
[19] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[20] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]