January  2016, 3(1): 17-50. doi: 10.3934/jcd.2016002

Towards a formal tie between combinatorial and classical vector field dynamics

1. 

Département de mathématiques, Université de Sherbrooke, 2500 boul. Université, Sherbrooke, Qc, J1K2R1, Canada

2. 

Division of Computational Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. St. Łojasiewicza 6, 30-348 Kraków, Poland

3. 

Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030

Received  September 2015 Revised  June 2016 Published  September 2016

Forman's combinatorial vector fields on simplicial complexes are a discrete analogue of classical flows generated by dynamical systems. Over the last decade, many notions from dynamical systems theory have found analogues in this combinatorial setting, such as for example discrete gradient flows and Forman's discrete Morse theory. So far, however, there is no formal tie between the two theories, and it is not immediately clear what the precise relation between the combinatorial and the classical setting is. The goal of the present paper is to establish such a formal tie on the level of the induced dynamics. Following Forman's paper [6], we work with possibly non-gradient combinatorial vector fields on finite simplicial complexes, and construct a flow-like upper semi-continuous acyclic-valued mapping on the underlying topological space whose dynamics is equivalent to the dynamics of Forman's combinatorial vector field on the level of isolated invariant sets and isolating blocks.
Citation: Tomasz Kaczynski, Marian Mrozek, Thomas Wanner. Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics, 2016, 3 (1) : 17-50. doi: 10.3934/jcd.2016002
References:
[1]

M. Allili and T. Kaczynski, An algorithmic approach to the construction of homomorphisms induced by maps in homology,, Transactions of the American Mathematical Society, 352 (2000), 2261.  doi: 10.1090/S0002-9947-99-02527-1.  Google Scholar

[2]

B. Batko and M. Mrozek, Weak index pairs and the Conley index for discrete multivalued dynamical systems,, SIAM Journal on Applied Dynamical Systems, 15 (2016), 1143.  doi: 10.1137/15M1046691.  Google Scholar

[3]

C. Conley, Isolated Invariant Sets and the Morse Index,, American Mathematical Society, (1978).   Google Scholar

[4]

C. Conley and R. Easton, Isolated invariant sets and isolating blocks,, Transactions of the American Mathematical Society, 158 (1971), 35.  doi: 10.1090/S0002-9947-1971-0279830-1.  Google Scholar

[5]

R. Forman, Morse theory for cell complexes,, Advances in Mathematics, 134 (1998), 90.  doi: 10.1006/aima.1997.1650.  Google Scholar

[6]

R. Forman, Combinatorial vector fields and dynamical systems,, Mathematische Zeitschrift, 228 (1998), 629.  doi: 10.1007/PL00004638.  Google Scholar

[7]

L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, $2^{nd}$ ed,, Topological Fixed Point Theory and Its Applications, 4 (2006).   Google Scholar

[8]

T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology,, Applied Mathematical Sciences, 157 (2004).  doi: 10.1007/b97315.  Google Scholar

[9]

T. Kaczynski and M. Mrozek, Conley index for discrete multivalued dynamical systems,, Topology and Its Applications, 65 (1995), 83.  doi: 10.1016/0166-8641(94)00088-K.  Google Scholar

[10]

H. King, K. Knudson and N. Mramor, Generating discrete Morse functions from point data,, Experimental Mathematics, 14 (2005), 435.  doi: 10.1080/10586458.2005.10128941.  Google Scholar

[11]

M. Mrozek and B. Batko, Coreduction homology algorithm,, Discrete and Computational Geometry, 41 (2009), 96.  doi: 10.1007/s00454-008-9073-y.  Google Scholar

[12]

V. Robins, P. J. Wood and A. P. Sheppard, Theory and algorithms for constructing discrete Morse complexes from grayscale digital images,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 1646.  doi: 10.1109/TPAMI.2011.95.  Google Scholar

[13]

T. Stephens and T. Wanner, Rigorous validation of isolating blocks for flows and their Conley indices,, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1847.  doi: 10.1137/140971075.  Google Scholar

show all references

References:
[1]

M. Allili and T. Kaczynski, An algorithmic approach to the construction of homomorphisms induced by maps in homology,, Transactions of the American Mathematical Society, 352 (2000), 2261.  doi: 10.1090/S0002-9947-99-02527-1.  Google Scholar

[2]

B. Batko and M. Mrozek, Weak index pairs and the Conley index for discrete multivalued dynamical systems,, SIAM Journal on Applied Dynamical Systems, 15 (2016), 1143.  doi: 10.1137/15M1046691.  Google Scholar

[3]

C. Conley, Isolated Invariant Sets and the Morse Index,, American Mathematical Society, (1978).   Google Scholar

[4]

C. Conley and R. Easton, Isolated invariant sets and isolating blocks,, Transactions of the American Mathematical Society, 158 (1971), 35.  doi: 10.1090/S0002-9947-1971-0279830-1.  Google Scholar

[5]

R. Forman, Morse theory for cell complexes,, Advances in Mathematics, 134 (1998), 90.  doi: 10.1006/aima.1997.1650.  Google Scholar

[6]

R. Forman, Combinatorial vector fields and dynamical systems,, Mathematische Zeitschrift, 228 (1998), 629.  doi: 10.1007/PL00004638.  Google Scholar

[7]

L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, $2^{nd}$ ed,, Topological Fixed Point Theory and Its Applications, 4 (2006).   Google Scholar

[8]

T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology,, Applied Mathematical Sciences, 157 (2004).  doi: 10.1007/b97315.  Google Scholar

[9]

T. Kaczynski and M. Mrozek, Conley index for discrete multivalued dynamical systems,, Topology and Its Applications, 65 (1995), 83.  doi: 10.1016/0166-8641(94)00088-K.  Google Scholar

[10]

H. King, K. Knudson and N. Mramor, Generating discrete Morse functions from point data,, Experimental Mathematics, 14 (2005), 435.  doi: 10.1080/10586458.2005.10128941.  Google Scholar

[11]

M. Mrozek and B. Batko, Coreduction homology algorithm,, Discrete and Computational Geometry, 41 (2009), 96.  doi: 10.1007/s00454-008-9073-y.  Google Scholar

[12]

V. Robins, P. J. Wood and A. P. Sheppard, Theory and algorithms for constructing discrete Morse complexes from grayscale digital images,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 1646.  doi: 10.1109/TPAMI.2011.95.  Google Scholar

[13]

T. Stephens and T. Wanner, Rigorous validation of isolating blocks for flows and their Conley indices,, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1847.  doi: 10.1137/140971075.  Google Scholar

[1]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[2]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[3]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[4]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[5]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[6]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[7]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[8]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[9]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[10]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[11]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[12]

Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021082

[13]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[14]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[15]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[16]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[17]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[18]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[19]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[20]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

 Impact Factor: 

Metrics

  • PDF downloads (120)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]