-
Previous Article
On the numerical approximation of the Perron-Frobenius and Koopman operator
- JCD Home
- This Issue
-
Next Article
Discretization strategies for computing Conley indices and Morse decompositions of flows
Towards a formal tie between combinatorial and classical vector field dynamics
1. | Département de mathématiques, Université de Sherbrooke, 2500 boul. Université, Sherbrooke, Qc, J1K2R1, Canada |
2. | Division of Computational Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. St. Łojasiewicza 6, 30-348 Kraków, Poland |
3. | Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030 |
References:
[1] |
M. Allili and T. Kaczynski, An algorithmic approach to the construction of homomorphisms induced by maps in homology,, Transactions of the American Mathematical Society, 352 (2000), 2261.
doi: 10.1090/S0002-9947-99-02527-1. |
[2] |
B. Batko and M. Mrozek, Weak index pairs and the Conley index for discrete multivalued dynamical systems,, SIAM Journal on Applied Dynamical Systems, 15 (2016), 1143.
doi: 10.1137/15M1046691. |
[3] |
C. Conley, Isolated Invariant Sets and the Morse Index,, American Mathematical Society, (1978).
|
[4] |
C. Conley and R. Easton, Isolated invariant sets and isolating blocks,, Transactions of the American Mathematical Society, 158 (1971), 35.
doi: 10.1090/S0002-9947-1971-0279830-1. |
[5] |
R. Forman, Morse theory for cell complexes,, Advances in Mathematics, 134 (1998), 90.
doi: 10.1006/aima.1997.1650. |
[6] |
R. Forman, Combinatorial vector fields and dynamical systems,, Mathematische Zeitschrift, 228 (1998), 629.
doi: 10.1007/PL00004638. |
[7] |
L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, $2^{nd}$ ed,, Topological Fixed Point Theory and Its Applications, 4 (2006).
|
[8] |
T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology,, Applied Mathematical Sciences, 157 (2004).
doi: 10.1007/b97315. |
[9] |
T. Kaczynski and M. Mrozek, Conley index for discrete multivalued dynamical systems,, Topology and Its Applications, 65 (1995), 83.
doi: 10.1016/0166-8641(94)00088-K. |
[10] |
H. King, K. Knudson and N. Mramor, Generating discrete Morse functions from point data,, Experimental Mathematics, 14 (2005), 435.
doi: 10.1080/10586458.2005.10128941. |
[11] |
M. Mrozek and B. Batko, Coreduction homology algorithm,, Discrete and Computational Geometry, 41 (2009), 96.
doi: 10.1007/s00454-008-9073-y. |
[12] |
V. Robins, P. J. Wood and A. P. Sheppard, Theory and algorithms for constructing discrete Morse complexes from grayscale digital images,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 1646.
doi: 10.1109/TPAMI.2011.95. |
[13] |
T. Stephens and T. Wanner, Rigorous validation of isolating blocks for flows and their Conley indices,, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1847.
doi: 10.1137/140971075. |
show all references
References:
[1] |
M. Allili and T. Kaczynski, An algorithmic approach to the construction of homomorphisms induced by maps in homology,, Transactions of the American Mathematical Society, 352 (2000), 2261.
doi: 10.1090/S0002-9947-99-02527-1. |
[2] |
B. Batko and M. Mrozek, Weak index pairs and the Conley index for discrete multivalued dynamical systems,, SIAM Journal on Applied Dynamical Systems, 15 (2016), 1143.
doi: 10.1137/15M1046691. |
[3] |
C. Conley, Isolated Invariant Sets and the Morse Index,, American Mathematical Society, (1978).
|
[4] |
C. Conley and R. Easton, Isolated invariant sets and isolating blocks,, Transactions of the American Mathematical Society, 158 (1971), 35.
doi: 10.1090/S0002-9947-1971-0279830-1. |
[5] |
R. Forman, Morse theory for cell complexes,, Advances in Mathematics, 134 (1998), 90.
doi: 10.1006/aima.1997.1650. |
[6] |
R. Forman, Combinatorial vector fields and dynamical systems,, Mathematische Zeitschrift, 228 (1998), 629.
doi: 10.1007/PL00004638. |
[7] |
L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, $2^{nd}$ ed,, Topological Fixed Point Theory and Its Applications, 4 (2006).
|
[8] |
T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology,, Applied Mathematical Sciences, 157 (2004).
doi: 10.1007/b97315. |
[9] |
T. Kaczynski and M. Mrozek, Conley index for discrete multivalued dynamical systems,, Topology and Its Applications, 65 (1995), 83.
doi: 10.1016/0166-8641(94)00088-K. |
[10] |
H. King, K. Knudson and N. Mramor, Generating discrete Morse functions from point data,, Experimental Mathematics, 14 (2005), 435.
doi: 10.1080/10586458.2005.10128941. |
[11] |
M. Mrozek and B. Batko, Coreduction homology algorithm,, Discrete and Computational Geometry, 41 (2009), 96.
doi: 10.1007/s00454-008-9073-y. |
[12] |
V. Robins, P. J. Wood and A. P. Sheppard, Theory and algorithms for constructing discrete Morse complexes from grayscale digital images,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 1646.
doi: 10.1109/TPAMI.2011.95. |
[13] |
T. Stephens and T. Wanner, Rigorous validation of isolating blocks for flows and their Conley indices,, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1847.
doi: 10.1137/140971075. |
[1] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[2] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[3] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[4] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[5] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[6] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[7] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[8] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[9] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[10] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[11] |
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216 |
[12] |
Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021082 |
[13] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[14] |
Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341 |
[15] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[16] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[17] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[18] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[19] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[20] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]