Citation: |
[1] |
A. Arneodo, P. H. Coullet, E. A. Spiegel and C. Tresser, Asymptotic chaos, Physica D: Nonlinear Phenomena, 14 (1985), 327-347.doi: 10.1016/0167-2789(85)90093-4. |
[2] |
A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Oxford University Press, 2013. |
[3] |
C. Chicone, Inertial and slow manifolds for delay equations with small delays, Journal of Differential Equations, 190 (2003), 364-406, URL http://www.sciencedirect.com/science/article/pii/S0022039602001481.doi: 10.1016/S0022-0396(02)00148-1. |
[4] |
P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4612-3506-4. |
[5] |
J. D. Crawford and S. Omohundro, On the global structure of period doubling flows, Physica D: Nonlinear Phenomena, 13 (1984), 161-180, URL http://www.sciencedirect.com/science/article/pii/0167278984902756.doi: 10.1016/0167-2789(84)90275-6. |
[6] |
M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer-Verlag, Berlin, 2001, 145-174, 805-807. |
[7] |
M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numerische Mathematik, 75 (1997), 293-317.doi: 10.1007/s002110050240. |
[8] |
M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior, SIAM Journal on Numerical Analysis, 36 (1999), 491-515, URL http://epubs.siam.org/sinum/resource/1/sjnaam/v36/i2/p491_s1.doi: 10.1137/S0036142996313002. |
[9] |
M. Dellnitz, O. Junge, M. Lo, J. E. Marsden, K. Padberg, R. Preis, S. Ross and B. Thiere, Transport of Mars-crossing asteroids from the quasi-Hilda region, Physical Review Letters, 94 (2005), 231102, 4pp.doi: 10.1103/PhysRevLett.94.231102. |
[10] |
R. D. Driver, On Ryabov's asymptotic characterization of the solutions of quasi-linear differential equations with small delays, SIAM Review, 10 (1968), 329-341.doi: 10.1137/1010058. |
[11] |
J. Dugundji, An extension of Tietze's theorem, Pacific J. Math., 1 (1951), 353-367, URL http://projecteuclid.org/euclid.pjm/1103052106.doi: 10.2140/pjm.1951.1.353. |
[12] |
N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publishers, Inc., 1957. |
[13] |
J. D. Farmer, Chaotic attractors of an infinite-dimensional dynamical system, Physica D, 4 (1982), 366-393.doi: 10.1016/0167-2789(82)90042-2. |
[14] |
C. Foias, M. Jolly, I. Kevrekidis, G. Sell and E. Titi, On the computation of inertial manifolds, Physics Letters A, 131 (1988), 433-436.doi: 10.1016/0375-9601(88)90295-2. |
[15] |
G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost invariant sets and cycles, SIAM Journal on Scientific Computing, 24 (2003), 1839-1863.doi: 10.1137/S106482750238911X. |
[16] |
G. Froyland, C. Horenkamp, V. Rossi, N. Santitissadeekorn and A. Sen Gupta, Three-dimensional characterization and tracking of an Agulhas ring, Ocean Modelling, 52 (2012), 69-75. |
[17] |
G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems, Physica D: Nonlinear Phenomena, 239 (2010), 1527-1541.doi: 10.1016/j.physd.2010.03.009. |
[18] |
C. W. Gear, T. J. Kaper, I. G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes, SIAM Journal on Applied Dynamical Systems, 4 (2005), 711-732.doi: 10.1137/040608295. |
[19] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied mathematical sciences, Springer-Verlag, New York, Berlin, Heidelberg, 1993.doi: 10.1007/978-1-4612-4342-7. |
[20] |
B. R. Hunt and V. Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity, 12 (1999), 1263-1275, URL http://stacks.iop.org/0951-7715/12/i=5/a=303.doi: 10.1088/0951-7715/12/5/303. |
[21] |
B. Krauskopf and H. Osinga, Two-dimensional global manifolds of vector fields, Chaos: An Interdisciplinary Journal of Nonlinear Science, 9 (1999), 768-774.doi: 10.1063/1.166450. |
[22] |
I. Kukavica and J. C. Robinson, Distinguishing smooth functions by a finite number of point values, and a version of the Takens embedding theorem, Physica D: Nonlinear Phenomena, 196 (2004), 45-66.doi: 10.1016/j.physd.2004.04.004. |
[23] |
M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287-289.doi: 10.1126/science.267326. |
[24] |
I. Mezić and A. Banaszuk, Comparison of systems with complex behavior, Physica D: Nonlinear Phenomena, 197 (2004), 101-133, URL http://www.sciencedirect.com/science/article/pii/S0167278904002507.doi: 10.1016/j.physd.2004.06.015. |
[25] |
J. C. Robinson, A topological delay embedding theorem for infinite-dimensional dynamical systems, Nonlinearity, 18 (2005), 2135-2143.doi: 10.1088/0951-7715/18/5/013. |
[26] |
T. Sahai and A. Vladimirsky, Numerical methods for approximating invariant manifolds of delayed systems, SIAM J. Applied Dynamical Systems, 8 (2009), 1116-1135.doi: 10.1137/080718772. |
[27] |
T. Sauer, J. A. Yorke and M. Casdagli, Embedology, J. Stat. Phys., 65 (1991), 579-616.doi: 10.1007/BF01053745. |
[28] |
C. Schütte, W. Huisinga and P. Deuflhard, Transfer operator approach to conformational dynamics in biomolecular systems, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer-Verlag, Berlin, 2001, 191-223. |
[29] |
J. Stark, Delay embeddings for forced systems. I. Deterministic forcing, Journal of Nonlinear Science, 9 (1999), 255-332.doi: 10.1007/s003329900072. |
[30] |
F. Takens, Detecting strange attractors in turbulence, Springer Lecture Notes in Mathematics, 898 (1981), 366-381. |
[31] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997, URL http://dx.doi.org/10.1007/978-1-4612-0645-3_9.doi: 10.1007/978-1-4612-0645-3. |
[32] |
C. Vandekerckhove, I. Kevrekidis and D. Roose, An efficient Newton-Krylov implementation of the constrained runs scheme for initializing on a slow manifold, Journal of Scientific Computing, 39 (2009), 167-188.doi: 10.1007/s10915-008-9256-y. |
[33] |
S. Willard, General Topology, Addison-Wesley, Reading, Mass., 1970. |