January  2016, 3(1): 93-112. doi: 10.3934/jcd.2016005

On the computation of attractors for delay differential equations

1. 

Institute for Mathematics, University of Paderborn, D-33095 Paderborn

2. 

Department of Mathematics, Paderborn University, 33095 Paderborn, Germany, Germany

Received  September 2015 Revised  March 2016 Published  October 2016

In this work we present a novel framework for the computation of finite dimensional invariant sets of infinite dimensional dynamical systems. It extends a classical subdivision technique [7] for the computation of such objects of finite dimensional systems to the infinite dimensional case by utilizing results on embedding techniques for infinite dimensional systems. We show how to implement this approach for the analysis of delay differential equations and illustrate the feasibility of our implementation by computing invariant sets for three different delay differential equations.
Citation: Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005
References:
[1]

A. Arneodo, P. H. Coullet, E. A. Spiegel and C. Tresser, Asymptotic chaos,, Physica D: Nonlinear Phenomena, 14 (1985), 327.  doi: 10.1016/0167-2789(85)90093-4.  Google Scholar

[2]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Oxford University Press, (2013).   Google Scholar

[3]

C. Chicone, Inertial and slow manifolds for delay equations with small delays,, Journal of Differential Equations, 190 (2003), 364.  doi: 10.1016/S0022-0396(02)00148-1.  Google Scholar

[4]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations,, Springer-Verlag, (1989).  doi: 10.1007/978-1-4612-3506-4.  Google Scholar

[5]

J. D. Crawford and S. Omohundro, On the global structure of period doubling flows,, Physica D: Nonlinear Phenomena, 13 (1984), 161.  doi: 10.1016/0167-2789(84)90275-6.  Google Scholar

[6]

M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145.   Google Scholar

[7]

M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,, Numerische Mathematik, 75 (1997), 293.  doi: 10.1007/s002110050240.  Google Scholar

[8]

M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491.  doi: 10.1137/S0036142996313002.  Google Scholar

[9]

M. Dellnitz, O. Junge, M. Lo, J. E. Marsden, K. Padberg, R. Preis, S. Ross and B. Thiere, Transport of Mars-crossing asteroids from the quasi-Hilda region,, Physical Review Letters, 94 (2005).  doi: 10.1103/PhysRevLett.94.231102.  Google Scholar

[10]

R. D. Driver, On Ryabov's asymptotic characterization of the solutions of quasi-linear differential equations with small delays,, SIAM Review, 10 (1968), 329.  doi: 10.1137/1010058.  Google Scholar

[11]

J. Dugundji, An extension of Tietze's theorem,, Pacific J. Math., 1 (1951), 353.  doi: 10.2140/pjm.1951.1.353.  Google Scholar

[12]

N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory,, Interscience Publishers, (1957).   Google Scholar

[13]

J. D. Farmer, Chaotic attractors of an infinite-dimensional dynamical system,, Physica D, 4 (1982), 366.  doi: 10.1016/0167-2789(82)90042-2.  Google Scholar

[14]

C. Foias, M. Jolly, I. Kevrekidis, G. Sell and E. Titi, On the computation of inertial manifolds,, Physics Letters A, 131 (1988), 433.  doi: 10.1016/0375-9601(88)90295-2.  Google Scholar

[15]

G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost invariant sets and cycles,, SIAM Journal on Scientific Computing, 24 (2003), 1839.  doi: 10.1137/S106482750238911X.  Google Scholar

[16]

G. Froyland, C. Horenkamp, V. Rossi, N. Santitissadeekorn and A. Sen Gupta, Three-dimensional characterization and tracking of an Agulhas ring,, Ocean Modelling, 52 (2012), 69.   Google Scholar

[17]

G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems,, Physica D: Nonlinear Phenomena, 239 (2010), 1527.  doi: 10.1016/j.physd.2010.03.009.  Google Scholar

[18]

C. W. Gear, T. J. Kaper, I. G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes,, SIAM Journal on Applied Dynamical Systems, 4 (2005), 711.  doi: 10.1137/040608295.  Google Scholar

[19]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Applied mathematical sciences, (1993).  doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[20]

B. R. Hunt and V. Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces,, Nonlinearity, 12 (1999), 1263.  doi: 10.1088/0951-7715/12/5/303.  Google Scholar

[21]

B. Krauskopf and H. Osinga, Two-dimensional global manifolds of vector fields,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 9 (1999), 768.  doi: 10.1063/1.166450.  Google Scholar

[22]

I. Kukavica and J. C. Robinson, Distinguishing smooth functions by a finite number of point values, and a version of the Takens embedding theorem,, Physica D: Nonlinear Phenomena, 196 (2004), 45.  doi: 10.1016/j.physd.2004.04.004.  Google Scholar

[23]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287.  doi: 10.1126/science.267326.  Google Scholar

[24]

I. Mezić and A. Banaszuk, Comparison of systems with complex behavior,, Physica D: Nonlinear Phenomena, 197 (2004), 101.  doi: 10.1016/j.physd.2004.06.015.  Google Scholar

[25]

J. C. Robinson, A topological delay embedding theorem for infinite-dimensional dynamical systems,, Nonlinearity, 18 (2005), 2135.  doi: 10.1088/0951-7715/18/5/013.  Google Scholar

[26]

T. Sahai and A. Vladimirsky, Numerical methods for approximating invariant manifolds of delayed systems,, SIAM J. Applied Dynamical Systems, 8 (2009), 1116.  doi: 10.1137/080718772.  Google Scholar

[27]

T. Sauer, J. A. Yorke and M. Casdagli, Embedology,, J. Stat. Phys., 65 (1991), 579.  doi: 10.1007/BF01053745.  Google Scholar

[28]

C. Schütte, W. Huisinga and P. Deuflhard, Transfer operator approach to conformational dynamics in biomolecular systems,, in Ergodic Theory, (2001), 191.   Google Scholar

[29]

J. Stark, Delay embeddings for forced systems. I. Deterministic forcing,, Journal of Nonlinear Science, 9 (1999), 255.  doi: 10.1007/s003329900072.  Google Scholar

[30]

F. Takens, Detecting strange attractors in turbulence,, Springer Lecture Notes in Mathematics, 898 (1981), 366.   Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997), 978.  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[32]

C. Vandekerckhove, I. Kevrekidis and D. Roose, An efficient Newton-Krylov implementation of the constrained runs scheme for initializing on a slow manifold,, Journal of Scientific Computing, 39 (2009), 167.  doi: 10.1007/s10915-008-9256-y.  Google Scholar

[33]

S. Willard, General Topology,, Addison-Wesley, (1970).   Google Scholar

show all references

References:
[1]

A. Arneodo, P. H. Coullet, E. A. Spiegel and C. Tresser, Asymptotic chaos,, Physica D: Nonlinear Phenomena, 14 (1985), 327.  doi: 10.1016/0167-2789(85)90093-4.  Google Scholar

[2]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Oxford University Press, (2013).   Google Scholar

[3]

C. Chicone, Inertial and slow manifolds for delay equations with small delays,, Journal of Differential Equations, 190 (2003), 364.  doi: 10.1016/S0022-0396(02)00148-1.  Google Scholar

[4]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations,, Springer-Verlag, (1989).  doi: 10.1007/978-1-4612-3506-4.  Google Scholar

[5]

J. D. Crawford and S. Omohundro, On the global structure of period doubling flows,, Physica D: Nonlinear Phenomena, 13 (1984), 161.  doi: 10.1016/0167-2789(84)90275-6.  Google Scholar

[6]

M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145.   Google Scholar

[7]

M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,, Numerische Mathematik, 75 (1997), 293.  doi: 10.1007/s002110050240.  Google Scholar

[8]

M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491.  doi: 10.1137/S0036142996313002.  Google Scholar

[9]

M. Dellnitz, O. Junge, M. Lo, J. E. Marsden, K. Padberg, R. Preis, S. Ross and B. Thiere, Transport of Mars-crossing asteroids from the quasi-Hilda region,, Physical Review Letters, 94 (2005).  doi: 10.1103/PhysRevLett.94.231102.  Google Scholar

[10]

R. D. Driver, On Ryabov's asymptotic characterization of the solutions of quasi-linear differential equations with small delays,, SIAM Review, 10 (1968), 329.  doi: 10.1137/1010058.  Google Scholar

[11]

J. Dugundji, An extension of Tietze's theorem,, Pacific J. Math., 1 (1951), 353.  doi: 10.2140/pjm.1951.1.353.  Google Scholar

[12]

N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory,, Interscience Publishers, (1957).   Google Scholar

[13]

J. D. Farmer, Chaotic attractors of an infinite-dimensional dynamical system,, Physica D, 4 (1982), 366.  doi: 10.1016/0167-2789(82)90042-2.  Google Scholar

[14]

C. Foias, M. Jolly, I. Kevrekidis, G. Sell and E. Titi, On the computation of inertial manifolds,, Physics Letters A, 131 (1988), 433.  doi: 10.1016/0375-9601(88)90295-2.  Google Scholar

[15]

G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost invariant sets and cycles,, SIAM Journal on Scientific Computing, 24 (2003), 1839.  doi: 10.1137/S106482750238911X.  Google Scholar

[16]

G. Froyland, C. Horenkamp, V. Rossi, N. Santitissadeekorn and A. Sen Gupta, Three-dimensional characterization and tracking of an Agulhas ring,, Ocean Modelling, 52 (2012), 69.   Google Scholar

[17]

G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems,, Physica D: Nonlinear Phenomena, 239 (2010), 1527.  doi: 10.1016/j.physd.2010.03.009.  Google Scholar

[18]

C. W. Gear, T. J. Kaper, I. G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes,, SIAM Journal on Applied Dynamical Systems, 4 (2005), 711.  doi: 10.1137/040608295.  Google Scholar

[19]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Applied mathematical sciences, (1993).  doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[20]

B. R. Hunt and V. Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces,, Nonlinearity, 12 (1999), 1263.  doi: 10.1088/0951-7715/12/5/303.  Google Scholar

[21]

B. Krauskopf and H. Osinga, Two-dimensional global manifolds of vector fields,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 9 (1999), 768.  doi: 10.1063/1.166450.  Google Scholar

[22]

I. Kukavica and J. C. Robinson, Distinguishing smooth functions by a finite number of point values, and a version of the Takens embedding theorem,, Physica D: Nonlinear Phenomena, 196 (2004), 45.  doi: 10.1016/j.physd.2004.04.004.  Google Scholar

[23]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287.  doi: 10.1126/science.267326.  Google Scholar

[24]

I. Mezić and A. Banaszuk, Comparison of systems with complex behavior,, Physica D: Nonlinear Phenomena, 197 (2004), 101.  doi: 10.1016/j.physd.2004.06.015.  Google Scholar

[25]

J. C. Robinson, A topological delay embedding theorem for infinite-dimensional dynamical systems,, Nonlinearity, 18 (2005), 2135.  doi: 10.1088/0951-7715/18/5/013.  Google Scholar

[26]

T. Sahai and A. Vladimirsky, Numerical methods for approximating invariant manifolds of delayed systems,, SIAM J. Applied Dynamical Systems, 8 (2009), 1116.  doi: 10.1137/080718772.  Google Scholar

[27]

T. Sauer, J. A. Yorke and M. Casdagli, Embedology,, J. Stat. Phys., 65 (1991), 579.  doi: 10.1007/BF01053745.  Google Scholar

[28]

C. Schütte, W. Huisinga and P. Deuflhard, Transfer operator approach to conformational dynamics in biomolecular systems,, in Ergodic Theory, (2001), 191.   Google Scholar

[29]

J. Stark, Delay embeddings for forced systems. I. Deterministic forcing,, Journal of Nonlinear Science, 9 (1999), 255.  doi: 10.1007/s003329900072.  Google Scholar

[30]

F. Takens, Detecting strange attractors in turbulence,, Springer Lecture Notes in Mathematics, 898 (1981), 366.   Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997), 978.  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[32]

C. Vandekerckhove, I. Kevrekidis and D. Roose, An efficient Newton-Krylov implementation of the constrained runs scheme for initializing on a slow manifold,, Journal of Scientific Computing, 39 (2009), 167.  doi: 10.1007/s10915-008-9256-y.  Google Scholar

[33]

S. Willard, General Topology,, Addison-Wesley, (1970).   Google Scholar

[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[5]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[6]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[8]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[12]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[13]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[16]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[17]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[18]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[19]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[20]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

 Impact Factor: 

Metrics

  • PDF downloads (164)
  • HTML views (0)
  • Cited by (2)

[Back to Top]