January  2016, 3(1): 93-112. doi: 10.3934/jcd.2016005

On the computation of attractors for delay differential equations

1. 

Institute for Mathematics, University of Paderborn, D-33095 Paderborn

2. 

Department of Mathematics, Paderborn University, 33095 Paderborn, Germany, Germany

Received  September 2015 Revised  March 2016 Published  October 2016

In this work we present a novel framework for the computation of finite dimensional invariant sets of infinite dimensional dynamical systems. It extends a classical subdivision technique [7] for the computation of such objects of finite dimensional systems to the infinite dimensional case by utilizing results on embedding techniques for infinite dimensional systems. We show how to implement this approach for the analysis of delay differential equations and illustrate the feasibility of our implementation by computing invariant sets for three different delay differential equations.
Citation: Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005
References:
[1]

A. Arneodo, P. H. Coullet, E. A. Spiegel and C. Tresser, Asymptotic chaos,, Physica D: Nonlinear Phenomena, 14 (1985), 327.  doi: 10.1016/0167-2789(85)90093-4.  Google Scholar

[2]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Oxford University Press, (2013).   Google Scholar

[3]

C. Chicone, Inertial and slow manifolds for delay equations with small delays,, Journal of Differential Equations, 190 (2003), 364.  doi: 10.1016/S0022-0396(02)00148-1.  Google Scholar

[4]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations,, Springer-Verlag, (1989).  doi: 10.1007/978-1-4612-3506-4.  Google Scholar

[5]

J. D. Crawford and S. Omohundro, On the global structure of period doubling flows,, Physica D: Nonlinear Phenomena, 13 (1984), 161.  doi: 10.1016/0167-2789(84)90275-6.  Google Scholar

[6]

M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145.   Google Scholar

[7]

M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,, Numerische Mathematik, 75 (1997), 293.  doi: 10.1007/s002110050240.  Google Scholar

[8]

M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491.  doi: 10.1137/S0036142996313002.  Google Scholar

[9]

M. Dellnitz, O. Junge, M. Lo, J. E. Marsden, K. Padberg, R. Preis, S. Ross and B. Thiere, Transport of Mars-crossing asteroids from the quasi-Hilda region,, Physical Review Letters, 94 (2005).  doi: 10.1103/PhysRevLett.94.231102.  Google Scholar

[10]

R. D. Driver, On Ryabov's asymptotic characterization of the solutions of quasi-linear differential equations with small delays,, SIAM Review, 10 (1968), 329.  doi: 10.1137/1010058.  Google Scholar

[11]

J. Dugundji, An extension of Tietze's theorem,, Pacific J. Math., 1 (1951), 353.  doi: 10.2140/pjm.1951.1.353.  Google Scholar

[12]

N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory,, Interscience Publishers, (1957).   Google Scholar

[13]

J. D. Farmer, Chaotic attractors of an infinite-dimensional dynamical system,, Physica D, 4 (1982), 366.  doi: 10.1016/0167-2789(82)90042-2.  Google Scholar

[14]

C. Foias, M. Jolly, I. Kevrekidis, G. Sell and E. Titi, On the computation of inertial manifolds,, Physics Letters A, 131 (1988), 433.  doi: 10.1016/0375-9601(88)90295-2.  Google Scholar

[15]

G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost invariant sets and cycles,, SIAM Journal on Scientific Computing, 24 (2003), 1839.  doi: 10.1137/S106482750238911X.  Google Scholar

[16]

G. Froyland, C. Horenkamp, V. Rossi, N. Santitissadeekorn and A. Sen Gupta, Three-dimensional characterization and tracking of an Agulhas ring,, Ocean Modelling, 52 (2012), 69.   Google Scholar

[17]

G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems,, Physica D: Nonlinear Phenomena, 239 (2010), 1527.  doi: 10.1016/j.physd.2010.03.009.  Google Scholar

[18]

C. W. Gear, T. J. Kaper, I. G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes,, SIAM Journal on Applied Dynamical Systems, 4 (2005), 711.  doi: 10.1137/040608295.  Google Scholar

[19]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Applied mathematical sciences, (1993).  doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[20]

B. R. Hunt and V. Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces,, Nonlinearity, 12 (1999), 1263.  doi: 10.1088/0951-7715/12/5/303.  Google Scholar

[21]

B. Krauskopf and H. Osinga, Two-dimensional global manifolds of vector fields,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 9 (1999), 768.  doi: 10.1063/1.166450.  Google Scholar

[22]

I. Kukavica and J. C. Robinson, Distinguishing smooth functions by a finite number of point values, and a version of the Takens embedding theorem,, Physica D: Nonlinear Phenomena, 196 (2004), 45.  doi: 10.1016/j.physd.2004.04.004.  Google Scholar

[23]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287.  doi: 10.1126/science.267326.  Google Scholar

[24]

I. Mezić and A. Banaszuk, Comparison of systems with complex behavior,, Physica D: Nonlinear Phenomena, 197 (2004), 101.  doi: 10.1016/j.physd.2004.06.015.  Google Scholar

[25]

J. C. Robinson, A topological delay embedding theorem for infinite-dimensional dynamical systems,, Nonlinearity, 18 (2005), 2135.  doi: 10.1088/0951-7715/18/5/013.  Google Scholar

[26]

T. Sahai and A. Vladimirsky, Numerical methods for approximating invariant manifolds of delayed systems,, SIAM J. Applied Dynamical Systems, 8 (2009), 1116.  doi: 10.1137/080718772.  Google Scholar

[27]

T. Sauer, J. A. Yorke and M. Casdagli, Embedology,, J. Stat. Phys., 65 (1991), 579.  doi: 10.1007/BF01053745.  Google Scholar

[28]

C. Schütte, W. Huisinga and P. Deuflhard, Transfer operator approach to conformational dynamics in biomolecular systems,, in Ergodic Theory, (2001), 191.   Google Scholar

[29]

J. Stark, Delay embeddings for forced systems. I. Deterministic forcing,, Journal of Nonlinear Science, 9 (1999), 255.  doi: 10.1007/s003329900072.  Google Scholar

[30]

F. Takens, Detecting strange attractors in turbulence,, Springer Lecture Notes in Mathematics, 898 (1981), 366.   Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997), 978.  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[32]

C. Vandekerckhove, I. Kevrekidis and D. Roose, An efficient Newton-Krylov implementation of the constrained runs scheme for initializing on a slow manifold,, Journal of Scientific Computing, 39 (2009), 167.  doi: 10.1007/s10915-008-9256-y.  Google Scholar

[33]

S. Willard, General Topology,, Addison-Wesley, (1970).   Google Scholar

show all references

References:
[1]

A. Arneodo, P. H. Coullet, E. A. Spiegel and C. Tresser, Asymptotic chaos,, Physica D: Nonlinear Phenomena, 14 (1985), 327.  doi: 10.1016/0167-2789(85)90093-4.  Google Scholar

[2]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Oxford University Press, (2013).   Google Scholar

[3]

C. Chicone, Inertial and slow manifolds for delay equations with small delays,, Journal of Differential Equations, 190 (2003), 364.  doi: 10.1016/S0022-0396(02)00148-1.  Google Scholar

[4]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations,, Springer-Verlag, (1989).  doi: 10.1007/978-1-4612-3506-4.  Google Scholar

[5]

J. D. Crawford and S. Omohundro, On the global structure of period doubling flows,, Physica D: Nonlinear Phenomena, 13 (1984), 161.  doi: 10.1016/0167-2789(84)90275-6.  Google Scholar

[6]

M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145.   Google Scholar

[7]

M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,, Numerische Mathematik, 75 (1997), 293.  doi: 10.1007/s002110050240.  Google Scholar

[8]

M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491.  doi: 10.1137/S0036142996313002.  Google Scholar

[9]

M. Dellnitz, O. Junge, M. Lo, J. E. Marsden, K. Padberg, R. Preis, S. Ross and B. Thiere, Transport of Mars-crossing asteroids from the quasi-Hilda region,, Physical Review Letters, 94 (2005).  doi: 10.1103/PhysRevLett.94.231102.  Google Scholar

[10]

R. D. Driver, On Ryabov's asymptotic characterization of the solutions of quasi-linear differential equations with small delays,, SIAM Review, 10 (1968), 329.  doi: 10.1137/1010058.  Google Scholar

[11]

J. Dugundji, An extension of Tietze's theorem,, Pacific J. Math., 1 (1951), 353.  doi: 10.2140/pjm.1951.1.353.  Google Scholar

[12]

N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory,, Interscience Publishers, (1957).   Google Scholar

[13]

J. D. Farmer, Chaotic attractors of an infinite-dimensional dynamical system,, Physica D, 4 (1982), 366.  doi: 10.1016/0167-2789(82)90042-2.  Google Scholar

[14]

C. Foias, M. Jolly, I. Kevrekidis, G. Sell and E. Titi, On the computation of inertial manifolds,, Physics Letters A, 131 (1988), 433.  doi: 10.1016/0375-9601(88)90295-2.  Google Scholar

[15]

G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost invariant sets and cycles,, SIAM Journal on Scientific Computing, 24 (2003), 1839.  doi: 10.1137/S106482750238911X.  Google Scholar

[16]

G. Froyland, C. Horenkamp, V. Rossi, N. Santitissadeekorn and A. Sen Gupta, Three-dimensional characterization and tracking of an Agulhas ring,, Ocean Modelling, 52 (2012), 69.   Google Scholar

[17]

G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems,, Physica D: Nonlinear Phenomena, 239 (2010), 1527.  doi: 10.1016/j.physd.2010.03.009.  Google Scholar

[18]

C. W. Gear, T. J. Kaper, I. G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes,, SIAM Journal on Applied Dynamical Systems, 4 (2005), 711.  doi: 10.1137/040608295.  Google Scholar

[19]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Applied mathematical sciences, (1993).  doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[20]

B. R. Hunt and V. Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces,, Nonlinearity, 12 (1999), 1263.  doi: 10.1088/0951-7715/12/5/303.  Google Scholar

[21]

B. Krauskopf and H. Osinga, Two-dimensional global manifolds of vector fields,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 9 (1999), 768.  doi: 10.1063/1.166450.  Google Scholar

[22]

I. Kukavica and J. C. Robinson, Distinguishing smooth functions by a finite number of point values, and a version of the Takens embedding theorem,, Physica D: Nonlinear Phenomena, 196 (2004), 45.  doi: 10.1016/j.physd.2004.04.004.  Google Scholar

[23]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287.  doi: 10.1126/science.267326.  Google Scholar

[24]

I. Mezić and A. Banaszuk, Comparison of systems with complex behavior,, Physica D: Nonlinear Phenomena, 197 (2004), 101.  doi: 10.1016/j.physd.2004.06.015.  Google Scholar

[25]

J. C. Robinson, A topological delay embedding theorem for infinite-dimensional dynamical systems,, Nonlinearity, 18 (2005), 2135.  doi: 10.1088/0951-7715/18/5/013.  Google Scholar

[26]

T. Sahai and A. Vladimirsky, Numerical methods for approximating invariant manifolds of delayed systems,, SIAM J. Applied Dynamical Systems, 8 (2009), 1116.  doi: 10.1137/080718772.  Google Scholar

[27]

T. Sauer, J. A. Yorke and M. Casdagli, Embedology,, J. Stat. Phys., 65 (1991), 579.  doi: 10.1007/BF01053745.  Google Scholar

[28]

C. Schütte, W. Huisinga and P. Deuflhard, Transfer operator approach to conformational dynamics in biomolecular systems,, in Ergodic Theory, (2001), 191.   Google Scholar

[29]

J. Stark, Delay embeddings for forced systems. I. Deterministic forcing,, Journal of Nonlinear Science, 9 (1999), 255.  doi: 10.1007/s003329900072.  Google Scholar

[30]

F. Takens, Detecting strange attractors in turbulence,, Springer Lecture Notes in Mathematics, 898 (1981), 366.   Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997), 978.  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[32]

C. Vandekerckhove, I. Kevrekidis and D. Roose, An efficient Newton-Krylov implementation of the constrained runs scheme for initializing on a slow manifold,, Journal of Scientific Computing, 39 (2009), 167.  doi: 10.1007/s10915-008-9256-y.  Google Scholar

[33]

S. Willard, General Topology,, Addison-Wesley, (1970).   Google Scholar

[1]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[2]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[3]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[4]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[5]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[6]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[8]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[9]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[10]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[11]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[12]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[13]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[14]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[15]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[16]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[17]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[18]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[19]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

 Impact Factor: 

Metrics

  • PDF downloads (220)
  • HTML views (0)
  • Cited by (2)

[Back to Top]