-
Previous Article
Asymptotic invariance and the discretisation of nonautonomous forward attracting sets
- JCD Home
- This Issue
-
Next Article
Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator
Computing coherent sets using the Fokker-Planck equation
1. | Center for Mathematics, Technische Universität München, 85747 Garching bei München, Germany, Germany |
References:
[1] |
R. Banisch and P. Koltai, Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets,, , (). Google Scholar |
[2] |
J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Second edition. Dover Publications, (2001).
|
[3] |
S. Cox and P. Matthews, Exponential time differencing for stiff systems,, Journal of Computational Physics, 176 (2002), 430.
doi: 10.1006/jcph.2002.6995. |
[4] |
M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145.
|
[5] |
M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491.
doi: 10.1137/S0036142996313002. |
[6] |
L. Evans, Partial Differential Equations,, Graduate studies in mathematics, (2010).
doi: 10.1090/gsm/019. |
[7] |
G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems,, Physica D, 239 (2010), 1527.
doi: 10.1016/j.physd.2010.03.009. |
[8] |
G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds - connecting probabilistic and geometric descriptions of coherent structures in flows,, Physica D, 238 (2009), 1507.
doi: 10.1016/j.physd.2009.03.002. |
[9] |
G. Froyland, N. Santitissadeekorn and A. Monahan, Transport in time-dependent dynamical systems: Finite-time coherent sets,, Chaos, 20 (2010).
doi: 10.1063/1.3502450. |
[10] |
G. Froyland, An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems,, Physica D: Nonlinear Phenomena, 250 (2013), 1.
doi: 10.1016/j.physd.2013.01.013. |
[11] |
G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost-invariant sets and cycles,, SIAM Journal on Scientific Computing, 24 (2003), 1839.
doi: 10.1137/S106482750238911X. |
[12] |
G. Froyland and O. Junge, On fast computation of finite-time coherent sets using radial basis functions,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (2015).
doi: 10.1063/1.4927640. |
[13] |
G. Froyland, O. Junge and P. Koltai, Estimating long term behavior of flows without trajectory integration: The infinitesimal generator approach,, SIAM Journal on Numerical Analysis, 51 (2013), 223.
doi: 10.1137/110819986. |
[14] |
G. Froyland and P. Koltai, Estimating long-term behavior of periodically driven flows without trajectory integration,, , (). Google Scholar |
[15] |
G. Froyland and K. Padberg-Gehle, Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion,, in Ergodic Theory, 70 (2014), 171.
doi: 10.1007/978-1-4939-0419-8_9. |
[16] |
A. Hadjighasem, D. Karrasch, H. Teramoto and G. Haller, Spectral-clustering approach to lagrangian vortex detection,, Phys. Rev. E, 93 (2016).
doi: 10.1103/PhysRevE.93.063107. |
[17] |
G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows,, Physica D, 149 (2001), 248.
doi: 10.1016/S0167-2789(00)00199-8. |
[18] |
G. Haller, A variational theory of hyperbolic Lagrangian coherent structures,, Physica D, 240 (2011), 574.
doi: 10.1016/j.physd.2010.11.010. |
[19] |
G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352.
doi: 10.1016/S0167-2789(00)00142-1. |
[20] |
W. Huisinga and B. Schmidt, Metastability and dominant eigenvalues of transfer operators,, in New Algorithms for Macromolecular Simulation, 49 (2006), 167.
doi: 10.1007/3-540-31618-3_11. |
[21] |
O. Junge, J. E. Marsden and I. Mezic, Uncertainty in the dynamics of conservative maps,, in Proceedings of the 43rd IEEE Conference on Decision and Control, 2 (2004), 2225.
doi: 10.1109/CDC.2004.1430379. |
[22] |
A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff pdes,, SIAM Journal on Scientific Computing, 26 (2005), 1214.
doi: 10.1137/S1064827502410633. |
[23] |
A. Lasota and M. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics,, Second edition. Applied Mathematical Sciences, (1994).
doi: 10.1007/978-1-4612-4286-4. |
[24] |
T. Y. Li, Finite Approximation for the Frobenius-Perron Operator. A Solution to Ulam's Conjecture,, J. Approx. Theory, 17 (1976), 177.
doi: 10.1016/0021-9045(76)90037-X. |
[25] |
J.-C. Nave, Computational Science and Engineering,, 2008, (2015). Google Scholar |
[26] |
B. Oksendal, Stochastic Differential Equations: An Introduction with Applications,, Springer, (). Google Scholar |
[27] |
C. Schütte, A. Fischer, W. Huisinga and P. Deuflhard, A direct approach to conformational dynamics based on hybrid monte carlo,, Journal of Computational Physics, 151 (1999), 146.
doi: 10.1006/jcph.1999.6231. |
[28] |
S. M. Ulam, Problems in Modern Mathematics,, Courier Dover Publications, (2004). Google Scholar |
[29] |
T. A. Zang, On the rotation and skew-symmetric forms for incompressible flow simulations,, Applied Numerical Mathematics, 7 (1991), 27.
doi: 10.1016/0168-9274(91)90102-6. |
show all references
References:
[1] |
R. Banisch and P. Koltai, Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets,, , (). Google Scholar |
[2] |
J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Second edition. Dover Publications, (2001).
|
[3] |
S. Cox and P. Matthews, Exponential time differencing for stiff systems,, Journal of Computational Physics, 176 (2002), 430.
doi: 10.1006/jcph.2002.6995. |
[4] |
M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145.
|
[5] |
M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491.
doi: 10.1137/S0036142996313002. |
[6] |
L. Evans, Partial Differential Equations,, Graduate studies in mathematics, (2010).
doi: 10.1090/gsm/019. |
[7] |
G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems,, Physica D, 239 (2010), 1527.
doi: 10.1016/j.physd.2010.03.009. |
[8] |
G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds - connecting probabilistic and geometric descriptions of coherent structures in flows,, Physica D, 238 (2009), 1507.
doi: 10.1016/j.physd.2009.03.002. |
[9] |
G. Froyland, N. Santitissadeekorn and A. Monahan, Transport in time-dependent dynamical systems: Finite-time coherent sets,, Chaos, 20 (2010).
doi: 10.1063/1.3502450. |
[10] |
G. Froyland, An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems,, Physica D: Nonlinear Phenomena, 250 (2013), 1.
doi: 10.1016/j.physd.2013.01.013. |
[11] |
G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost-invariant sets and cycles,, SIAM Journal on Scientific Computing, 24 (2003), 1839.
doi: 10.1137/S106482750238911X. |
[12] |
G. Froyland and O. Junge, On fast computation of finite-time coherent sets using radial basis functions,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (2015).
doi: 10.1063/1.4927640. |
[13] |
G. Froyland, O. Junge and P. Koltai, Estimating long term behavior of flows without trajectory integration: The infinitesimal generator approach,, SIAM Journal on Numerical Analysis, 51 (2013), 223.
doi: 10.1137/110819986. |
[14] |
G. Froyland and P. Koltai, Estimating long-term behavior of periodically driven flows without trajectory integration,, , (). Google Scholar |
[15] |
G. Froyland and K. Padberg-Gehle, Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion,, in Ergodic Theory, 70 (2014), 171.
doi: 10.1007/978-1-4939-0419-8_9. |
[16] |
A. Hadjighasem, D. Karrasch, H. Teramoto and G. Haller, Spectral-clustering approach to lagrangian vortex detection,, Phys. Rev. E, 93 (2016).
doi: 10.1103/PhysRevE.93.063107. |
[17] |
G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows,, Physica D, 149 (2001), 248.
doi: 10.1016/S0167-2789(00)00199-8. |
[18] |
G. Haller, A variational theory of hyperbolic Lagrangian coherent structures,, Physica D, 240 (2011), 574.
doi: 10.1016/j.physd.2010.11.010. |
[19] |
G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352.
doi: 10.1016/S0167-2789(00)00142-1. |
[20] |
W. Huisinga and B. Schmidt, Metastability and dominant eigenvalues of transfer operators,, in New Algorithms for Macromolecular Simulation, 49 (2006), 167.
doi: 10.1007/3-540-31618-3_11. |
[21] |
O. Junge, J. E. Marsden and I. Mezic, Uncertainty in the dynamics of conservative maps,, in Proceedings of the 43rd IEEE Conference on Decision and Control, 2 (2004), 2225.
doi: 10.1109/CDC.2004.1430379. |
[22] |
A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff pdes,, SIAM Journal on Scientific Computing, 26 (2005), 1214.
doi: 10.1137/S1064827502410633. |
[23] |
A. Lasota and M. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics,, Second edition. Applied Mathematical Sciences, (1994).
doi: 10.1007/978-1-4612-4286-4. |
[24] |
T. Y. Li, Finite Approximation for the Frobenius-Perron Operator. A Solution to Ulam's Conjecture,, J. Approx. Theory, 17 (1976), 177.
doi: 10.1016/0021-9045(76)90037-X. |
[25] |
J.-C. Nave, Computational Science and Engineering,, 2008, (2015). Google Scholar |
[26] |
B. Oksendal, Stochastic Differential Equations: An Introduction with Applications,, Springer, (). Google Scholar |
[27] |
C. Schütte, A. Fischer, W. Huisinga and P. Deuflhard, A direct approach to conformational dynamics based on hybrid monte carlo,, Journal of Computational Physics, 151 (1999), 146.
doi: 10.1006/jcph.1999.6231. |
[28] |
S. M. Ulam, Problems in Modern Mathematics,, Courier Dover Publications, (2004). Google Scholar |
[29] |
T. A. Zang, On the rotation and skew-symmetric forms for incompressible flow simulations,, Applied Numerical Mathematics, 7 (1991), 27.
doi: 10.1016/0168-9274(91)90102-6. |
[1] |
Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250 |
[2] |
Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017 |
[3] |
José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401 |
[4] |
Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485 |
[5] |
Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016 |
[6] |
Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 |
[7] |
Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028 |
[8] |
Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028 |
[9] |
Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215 |
[10] |
Martin Burger, Ina Humpert, Jan-Frederik Pietschmann. On Fokker-Planck equations with In- and Outflow of Mass. Kinetic & Related Models, 2020, 13 (2) : 249-277. doi: 10.3934/krm.2020009 |
[11] |
Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165 |
[12] |
Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079 |
[13] |
Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65 |
[14] |
Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120 |
[15] |
Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028 |
[16] |
Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044 |
[17] |
Zeinab Karaki. Trend to the equilibrium for the Fokker-Planck system with an external magnetic field. Kinetic & Related Models, 2020, 13 (2) : 309-344. doi: 10.3934/krm.2020011 |
[18] |
Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845 |
[19] |
Yuan Gao, Guangzhen Jin, Jian-Guo Liu. Inbetweening auto-animation via Fokker-Planck dynamics and thresholding. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021016 |
[20] |
John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]