Citation: |
[1] |
D. Angeli, A Lyapunov approach to incremental stability properties, IEEE Trans. Automat. Contr., 47 (2002), 410-421.doi: 10.1109/9.989067. |
[2] |
E. Aylward, P. Parrilo and J.-J. Slotine, Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming, Automatica, 44 (2008), 2163-2170.doi: 10.1016/j.automatica.2007.12.012. |
[3] |
V. Boichenko, G. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations, volume 141 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics]. B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 2005.doi: 10.1007/978-3-322-80055-8. |
[4] |
G. Borg, A Condition for the Existence of Orbitally Stable Solutions of Dynamical Systems, Kungliga Tekniska Högskolan Handlingar Stockholm 153, 1960. |
[5] |
M. Buhmann, Radial Basis Functions: Theory and Implementations, volume 12 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2003.doi: 10.1017/CBO9780511543241. |
[6] |
F. Forni and R. Sepulchre, A differential Lyapunov framework for Contraction Analysis, IEEE Trans. Automat. Control, 59 (2014), 614-628.doi: 10.1109/TAC.2013.2285771. |
[7] |
P. Giesl, Necessary conditions for a limit cycle and its basin of attraction, Nonlinear Anal., 56 (2004), 643-677.doi: 10.1016/j.na.2003.07.020. |
[8] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, volume 1904 of Lecture Notes in Mathematics. Springer, Berlin, 2007. |
[9] |
P. Giesl, On the determination of the basin of attraction of a periodic orbit in two-dimensional systems, Journal of Mathematical Analysis and Applications, 335 (2007), 461-479.doi: 10.1016/j.jmaa.2007.01.069. |
[10] |
P. Giesl, On the determination of the basin of attraction of periodic orbits in three- and higher-dimensional systems, J. Math. Anal. Appl., 354 (2009), 606-618.doi: 10.1016/j.jmaa.2009.01.027. |
[11] |
P. Giesl and S. Hafstein, Construction of a CPA contraction metric for periodic orbits using semidefinite optimization, Nonlinear Anal., 86 (2013), 114-134.doi: 10.1016/j.na.2013.03.012. |
[12] |
P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.doi: 10.3934/dcdsb.2015.20.2291. |
[13] |
P. Giesl and H. Wendland, Meshless collocation: Error estimates with application to dynamical systems, SIAM J. Numer. Anal., 45 (2007), 1723-1741.doi: 10.1137/060658813. |
[14] |
P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964. |
[15] |
P. Hartman and C. Olech, On global asymptotic stability of solutions of differential equations, Trans. Amer. Math. Soc., 104 (1962), 154-178.doi: 10.2307/1993939. |
[16] |
A. Iske, Perfect Centre Placement for Radial Basis Function Methods, Technical report, Technical report TUM M9809, 1999. |
[17] |
G. Leonov, I. Burkin and A. Shepelyavyi, Frequency Methods in Oscillation Theory, Ser. Math. and its Appl., Vol. 357, Kluwer, 1996.doi: 10.1007/978-94-009-0193-3. |
[18] |
D. Lewis, Metric properties of differential equations, Amer. J. Math., 71 (1949), 294-312.doi: 10.2307/2372245. |
[19] |
W. Lohmiller and J.-J. Slotine, On contraction analysis for non-linear systems, Automatica, 34 (1998), 683-696.doi: 10.1016/S0005-1098(98)00019-3. |
[20] |
I. Manchester and J.-J. Slotine, Transverse contraction criteria for existence, stability, and robustness of a limit cycle, Systems Control Lett., 63 (2014), 32-38.doi: 10.1016/j.sysconle.2013.10.005. |
[21] |
J. McMichen, Determination of Areas and Basins of Attraction in Planar Dynamical Systems using Meshless Collocation, PhD thesis, University of Sussex, 2016. |
[22] |
B. Stenström, Dynamical systems with a certain local contraction property, Math. Scand., 11 (1962), 151-155.doi: 10.7146/math.scand.a-10661. |
[23] |
H. Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, Journal of Approximation Theory, 93 (1998), 258-272.doi: 10.1006/jath.1997.3137. |
[24] |
H. Wendland, Scattered Data Approximation, volume 17 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2005. |