We develop general methods for rigorously computing continuous branches of bifurcation points of equilibria, specifically focusing on fold points and on pitchfork bifurcations which are forced through ${\mathbb{Z}}_2$ symmetries in the equation. We apply these methods to secondary bifurcation points of the one-dimensional diblock copolymer model.
Citation: |
Figure 1.
Equilibrium bifurcation diagrams of the Cahn-Hilliard model (left image) and the diblock copolymer model for
Figure 3.
Equilibrium solutions
Figure 4.
Equilibrium solutions
Figure 6.
Equilibrium solutions
Table 1.
Some of the partial derivatives of the bifurcation function
[1] | G. Arioli and H. Koch, Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation, Arch. Ration. Mech. Anal., 197 (2010), 1033-1051. doi: 10.1007/s00205-010-0309-7. |
[2] | G. Arioli and H. Koch, Integration of dissipative partial differential equations: A case study, SIAM Journal on Applied Dynamical Systems, 9 (2010), 1119-1133. doi: 10.1137/10078298X. |
[3] | M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers, Physical Review A, 41 (1990), 6763-6771. |
[4] | D. Blömker, B. Gawron and T. Wanner, Nucleation in the one-dimensional stochastic Cahn-Hilliard model, Discrete and Continuous Dynamical Systems, Series A, 27 (2010), 25-52. doi: 10.3934/dcds.2010.27.25. |
[5] | D. Blömker, S. Maier-Paape and T. Wanner, Phase separation in stochastic Cahn-Hilliard models, in Mathematical Methods and Models in Phase Transitions (ed. A. Miranville), Nova Science Publishers, New York, 2005, 1–41. |
[6] | D. Blömker, E. Sander and T. Wanner, Degenerate nucleation in the Cahn-Hilliard-Cook model, SIAM Journal on Applied Dynamical Systems, 15 (2016), 459-494. doi: 10.1137/15M1028844. |
[7] | M. Breden, J.-P. Lessard and M. Vanicat, Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: A 3-component reaction-diffusion system, Acta Appl. Math., 128 (2013), 113-152. doi: 10.1007/s10440-013-9823-6. |
[8] | R. Choksi, M. A. Peletier and J. F. Williams, On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional, SIAM Journal on Applied Mathematics, 69 (2009), 1712-1738. doi: 10.1137/080728809. |
[9] | R. Choksi and X. Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers, Journal of Statistical Physics, 113 (2003), 151-176. doi: 10.1023/A:1025722804873. |
[10] | P. Chossat and R. Lauterbach, Methods in Equivariant Bifurcations and Dynamical Systems vol. 15 of Advanced Series in Nonlinear Dynamics, World Scientific, 2000. doi: 10.1142/4062. |
[11] | S. Day, J.-P. Lessard and K. Mischaikow, Validated continuation for equilibria of PDEs, SIAM Journal on Numerical Analysis, 45 (2007), 1398-1424. doi: 10.1137/050645968. |
[12] | J. P. Desi, H. Edrees, J. Price, E. Sander and T. Wanner, The dynamics of nucleation in stochastic Cahn-Morral systems, SIAM Journal on Applied Dynamical Systems, 10 (2011), 707-743. doi: 10.1137/100801378. |
[13] | M. Gameiro and J.-P. Lessard, Rigorous computation of smooth branches of equilibria for the three dimensional Cahn-Hilliard equation, Numer. Math., 117 (2011), 753-778. doi: 10.1007/s00211-010-0350-3. |
[14] | M. Gameiro, J.-P. Lessard and K. Mischaikow, Validated continuation over large parameter ranges for equilibria of PDEs, Mathematics and Computers in Simulation, 79 (2008), 1368-1382. doi: 10.1016/j.matcom.2008.03.014. |
[15] | M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proceedings of the Royal Society of Edinburgh, 125 (1995), 351-370. doi: 10.1017/S0308210500028079. |
[16] | A. Hungria, J.-P. Lessard and J. D. Mireles-James, Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach, Math. Comp., 85 (2016), 1427-1459. doi: 10.1090/mcom/3046. |
[17] | I. Johnson, E. Sander and T. Wanner, Branch interactions and long-term dynamics for the diblock copolymer model in one dimension, Discrete and Continuous Dynamical Systems. Series A, 33 (2013), 3671-3705. doi: 10.3934/dcds.2013.33.3671. |
[18] | O. E. Lanford III, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 427-434. doi: 10.1090/S0273-0979-1982-15008-X. |
[19] | J. -P. Lessard, Continuation of solutions and studying delay differential equations via rigorous numerics, Proceedings of Symposia in Applied Mathematics. |
[20] | J.-P. Lessard and J. D. Mireles James, Computer assisted Fourier analysis in sequence spaces of varying regularity, SIAM J. Math. Anal., 49 (2017), 530-561. doi: 10.1137/16M1056006. |
[21] | J. -P. Lessard, E. Sander and T. Wanner, Matlab codes to perform the computer-assisted proofs, Available at http://archimede.mat.ulaval.ca/jplessard/rigbpcont/. |
[22] | S. Maier-Paape, U. Miller, K. Mischaikow and T. Wanner, Rigorous numerics for the Cahn-Hilliard equation on the unit square, Revista Matematica Complutense, 21 (2008), 351-426. doi: 10.5209/rev_REMA.2008.v21.n2.16380. |
[23] | S. Maier-Paape, K. Mischaikow and T. Wanner, Structure of the attractor of the Cahn-Hilliard equation on a square, International Journal of Bifurcation and Chaos, 17 (2007), 1221-1263. doi: 10.1142/S0218127407017781. |
[24] | G. Moore and A. Spence, The calculation of turning points of nonlinear equations, SIAM Journal on Numerical Analysis, 17 (1980), 567-576. doi: 10.1137/0717048. |
[25] | M. T. Nakao, Numerical verification methods for solutions of ordinary and partial differential equations, Numer. Funct. Anal. Optim., 22 (2001), 321-356. doi: 10.1081/NFA-100105107. |
[26] | Y. Nishiura and I. Ohnishi, Some mathematical aspects of the micro-phase separation in diblock copolymers, Physica D, 84 (1995), 31-39. doi: 10.1016/0167-2789(95)00005-O. |
[27] | T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621-2632. doi: 10.1021/ma00164a028. |
[28] | M. Plum, An existence and inclusion method for two-point boundary value problems with turning points, Z. Angew. Math. Mech., 74 (1994), 615-623. doi: 10.1002/zamm.19940741210. |
[29] | M. Plum, Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems, J. Comput. Appl. Math., 60 (1995), 187-200. doi: 10.1016/0377-0427(94)00091-E. |
[30] | S. Rump, INTLAB -INTerval LABoratory, in Developments in Reliable Computing (ed. T. Csendes), Kluwer Academic Publishers, Dordrecht, 1999, 77–104. |
[31] | E. Sander and T. Wanner, Validated saddle-node bifurcations and applications to lattice dynamical systems, SIAM Journal on Applied Dynamical Systems, 15 (2016), 1690-1733. doi: 10.1137/16M1061011. |
[32] | A. Spence and B. Werner, Nonsimple turning points and cusps, IMA Journal of Numerical Analysis, 2 (1982), 413-427. doi: 10.1093/imanum/2.4.413. |
[33] | J. B. van den Berg and J.-P. Lessard, Rigorous numerics in dynamics, Notices of the American Mathematical Society,, 62 (2015), 1057-1061. doi: 10.1090/noti1276. |
[34] | J. B. van den Berg, J.-P. Lessard and K. Mischaikow, Global smooth solution curves using rigorous branch following, Math. Comp., 79 (2010), 1565-1584. doi: 10.1090/S0025-5718-10-02325-2. |
[35] | J. B. van den Berg and J. F. Williams, Validation of the bifurcation diagram in the 2d Ohta-Kawasaki problem, Nonlinearity, 30 (2017), 1584-1638. doi: 10.1088/1361-6544/aa60e8. |
[36] | T. Wanner, Computer-assisted bifurcation diagram validation and applications in materials science, Proceedings of Symposia in Applied Mathematics Vol. 74. American Mathematical Society, to appear. |
[37] | T. Wanner, Topological analysis of the diblock copolymer equation, in Mathematical Challenges in a New Phase of Materials Science (eds. Y. Nishiura and M. Kotani), vol. 166 of Springer Proceedings in Mathematics & Statistics, Springer-Verlag, 2016, 27–51. doi: 10.1007/978-4-431-56104-0_2. |
[38] | T. Wanner, Computer-assisted equilibrium validation for the diblock copolymer model, Discrete and Continuous Dynamical Systems, Series A, 37 (2017), 1075-1107. doi: 10.3934/dcds.2017045. |
[39] | B. Werner and A. Spence, The computation of symmetry-breaking bifurcation points, SIAM Journal on Numerical Analysis, 21 (1984), 388-399. doi: 10.1137/0721029. |
[40] | N. Yamamoto, A numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem, SIAM J. Numer. Anal., 35 (1998), 2004-2013. doi: 10.1137/S0036142996304498. |
[41] | E. Zeidler, Nonlinear Functional Analysis and its Applications. I: Fixed-Point Theorems, Springer-Verlag, New York – Berlin – Heidelberg, 1986. doi: 10.1007/978-1-4612-4838-5. |