[1]
|
A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Advances in Design and Control 6. Philadelphia, PA: SIAM, 2005.
doi: 10.1137/1.9780898718713.
|
[2]
|
D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd ed., Cambridge Studies in Advanced Mathematics, 116. Cambridge: Cambridge University Press, 2009.
doi: 10.1017/CBO9780511809781.
|
[3]
|
K. S. Arun and S. Y. Kung, Balanced approximation of stochastic systems, SIAM J. Matrix Anal. Appl., 11 (1990), 42-68.
doi: 10.1137/0611003.
|
[4]
|
O. E. Barndorff-Nielsen, J. L. Jensen and M. Sørensen, Some stationary processes in discrete and continuous time, Adv. in Appl. Probab., 30 (1998), 989-1007.
doi: 10.1239/aap/1035228204.
|
[5]
|
C. Beattie, S. Gugercin and V. Mehrmann, Model reduction for systems with inhomogeneous initial conditions, Systems Control Lett., 99 (2017), 99-106.
doi: 10.1016/j.sysconle.2016.11.007.
|
[6]
|
P. Benner and T. Damm, Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems., SIAM J. Control Optim., 49 (2011), 686-711.
doi: 10.1137/09075041X.
|
[7]
|
P. Benner and M. Redmann, Model reduction for stochastic systems, Stoch PDE: Anal Comp, 3 (2015), 291-338.
doi: 10.1007/s40072-015-0050-1.
|
[8]
|
R. F. Curtain, Stability of Stochastic Partial Differential Equation, J. Math. Anal. Appl., 79 (1981), 352-369.
doi: 10.1016/0022-247X(81)90031-7.
|
[9]
|
T. Damm and P. Benner, Balanced truncation for stochastic linear systems with guaranteed error bound, Proceedings of MTNS-2014, Groningen, The Netherlands, 2014, 1492-1497.
|
[10]
|
W. Grecksch and P. E. Kloeden, Time-discretised Galerkin approximations of parabolic stochastic PDEs, Bull. Aust. Math. Soc., 54 (1996), 79-85.
doi: 10.1017/S0004972700015094.
|
[11]
|
C. Hartmann, Balanced model reduction of partially observed langevin equations: An averaging principle, Math. Comput. Model. Dyn. Syst., 17 (2011), 463-490.
doi: 10.1080/13873954.2011.576517.
|
[12]
|
C. Hartmann, B. Schafer-Bung and A. Thons-Zueva, Balanced averaging of bilinear systems with applications to stochastic control, SIAM Journal on Control and Optimization, 51 (2013), 2356-2378.
doi: 10.1137/100796844.
|
[13]
|
C. Hartmann and C. Schütte, Balancing of partially-observed stochastic differential equations., in Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, IEEE, 2008, 4867-4872.
|
[14]
|
E. Hausenblas, Approximation for semilinear stochastic evolution equations, Potential Anal., 18 (2003), 141-186.
doi: 10.1023/A:1020552804087.
|
[15]
|
M. Heinkenschloss, T. Reis and A. C. Antoulas, Balanced truncation model reduction for systems with inhomogeneous initial conditions, Automatica J. IFAC, 47 (2011), 559-564.
doi: 10.1016/j.automatica.2010.12.002.
|
[16]
|
D. J. Higham and P. E. Kloeden, Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math., 101 (2005), 101-119.
doi: 10.1007/s00211-005-0611-8.
|
[17]
|
D. J. Higham and P. E. Kloeden, Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems, J. Comput. Appl. Math., 205 (2007), 949-956.
doi: 10.1016/j.cam.2006.03.039.
|
[18]
|
J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes. 2nd ed., Grundlehren der Mathematischen Wissenschaften. 288. Berlin: Springer, 2003.
doi: 10.1007/978-3-662-05265-5.
|
[19]
|
A. Jentzen and P. E. Kloeden, Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise., Proc. R. Soc. A 2009, 465 (2009), 649-667.
doi: 10.1098/rspa.2008.0325.
|
[20]
|
H.-H. Kuo, Introduction to Stochastic Integration, Universitext. New York, NJ: Springer, 2006.
|
[21]
|
Y. Liu and B. D. Anderson, Singular perturbation approximation of balanced systems, Int. J. Control, 50 (1989), 1379-1405.
doi: 10.1080/00207178908953437.
|
[22]
|
M. Metivier, Semimartingales: A Course on Stochastic Processes, De Gruyter Studies in Mathematics, 2. Berlin - New York: de Gruyter, 1982.
|
[23]
|
B. C. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction., IEEE Trans. Autom. Control, 26 (1981), 17-32.
doi: 10.1109/TAC.1981.1102568.
|
[24]
|
S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach, Encyclopedia of Mathematics and Its Applications 113. Cambridge: Cambridge University Press, 2007.
doi: 10.1017/CBO9780511721373.
|
[25]
|
A. J. Pritchard and J. Zabczyk, Stability and Stabilizability of Infinite-Dimensional Systems, SIAM Rev., 23 (1981), 25-52.
doi: 10.1137/1023003.
|
[26]
|
M. Redmann, Balancing Related Model Order Reduction Applied to Linear Controlled Evolution Equations with Lévy Noise, Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, 2016.
|
[27]
|
M. Redmann and P. Benner, Approximation and model order reduction for second order systems with Lévy-noise, AIMS Proceedings, 2015, 945-953.
doi: 10.3934/proc.2015.0945.
|
[28]
|
M. Redmann and P. Benner, Singular perturbation approximation for linear systems with Lévy noise, Stochastics and Dynamics, 18 (2018), 1850033, 23pp.
doi: 10.1142/S0219493718500338.
|
[29]
|
K.-I. Sato and M. Yamazato, Stationary processes of Ornstein-Uhlenbeck type, Probability Theory and Mathematical Statistics, 1021 (2006), 541-551.
doi: 10.1007/BFb0072949.
|
[30]
|
W. H. Schilders, H. A. Van der Vorst and J. Rommes, Model Order Reduction: Theory, Research Aspects and Applications, vol. 13, Springer, 2008.
doi: 10.1007/978-3-540-78841-6.
|
[31]
|
J. Zabczyk, Controllability of stochastic linear systems, Systems Control Lett., 1 (1981), 25-31.
doi: 10.1016/S0167-6911(81)80008-4.
|