- Previous Article
- JCD Home
- This Issue
-
Next Article
Computer-assisted proofs for radially symmetric solutions of PDEs
The snapback repellers for chaos in multi-dimensional maps
1. | Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, USA |
2. | Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan 300 |
The key of Marotto's theorem on chaos for multi-dimensional maps is the existence of snapback repeller. For practical application of the theory, locating a computable repelling neighborhood of the repelling fixed point has thus become the key issue. For some multi-dimensional maps $F$, basic information of $F$ is not sufficient to indicate the existence of snapback repeller for $F$. In this investigation, for a repeller $\bar{\bf z}$ of $F$, we start from estimating the repelling neighborhood of $\bar{\bf z}$ under $F^{k}$ for some $k ≥ 2$, by a theory built on the first or second derivative of $F^k$. By employing the Interval Arithmetic computation, we locate a snapback point ${\bf z}_0$ in this repelling neighborhood and examine the nonzero determinant condition for the Jacobian of $F$ along the orbit through ${\bf z}_0$. With this new approach, we are able to conclude the existence of snapback repellers under the valid definition, hence chaotic behaviors, in a discrete-time predator-prey model, a population model, and the FitzHugh nerve model.
References:
[1] |
G. Alefeld and J. Herzberger,
Introduction to Interval Computations, in Academic Press, NY, 1983. |
[2] |
G. Alefeld, Inclusion methods for systems of nonlinear equations-the interval Newton method
and modifications, Topics in Validated Computations, Elsevier, Amsterdam, 5 (1994), 7-26. |
[3] |
Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka and P. Pilarczyk,
A database schema for the analysis of global dynamics of multi parameter systems, SIAM J. Appl. Dyn. Syst., 8 (2009), 757-789.
doi: 10.1137/080734935. |
[4] |
J. R. Beddington, C. A. Free and J. H. Lawton,
Dynamic complexity in predator-prey models framed in difference equations, Nature, 255 (1975), 58-60.
|
[5] |
G. Chen, S.-B. Hsu and J. Zhou,
Snapback repellers as a cause of chaotic vibration of the wave equation with a van der Pol boundary condition and energy injection at the middle of the span, J. Math. Phys., 39 (1998), 6459-6489.
doi: 10.1063/1.532670. |
[6] |
S. S. Chen and C. W. Shih,
Transversal homoclinic orbits in a transiently chaotic neural network, Chaos, 12 (2002), 654-671.
doi: 10.1063/1.1488895. |
[7] |
L. Gardini and F. Tramontana,
Snapback repellers and chaotic attractors, Physical Rev. E, 81 (2010), 046202, 5pp.
doi: 10.1103/PhysRevE.81.046202. |
[8] |
L. Gardini, I. Sushko, V. Avrutin and M. Schanz,
Critical homoclinic orbits lead to snapback repellers, Chaos, Solitons, and Fractals, 44 (2011), 433-449.
doi: 10.1016/j.chaos.2011.03.004. |
[9] |
Z. Jing, Z. Jia and Y. Chang,
Chaos behavior in the discrete FitzHugh nerve system, China Set. A-Math, 44 (2001), 1571-1578.
doi: 10.1007/BF02880796. |
[10] |
C. Li and G. Chen,
An improved version of the Marotto theorem, Chaos, Solitons, and Fractals, 18 (2003), 69-77.
doi: 10.1016/S0960-0779(02)00605-7. |
[11] |
M.-C. Li, M.-J. Lyu and P. Zgliczyński,
Topological entropy for multidimensional perturbations of snapback repellers and one-dimensional maps, Nonlinearity, 21 (2008), 2555-2567.
doi: 10.1088/0951-7715/21/11/005. |
[12] |
T.-Y. Li and J. A. Yorke,
Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.
doi: 10.1080/00029890.1975.11994008. |
[13] |
K.-L. Liao and C.-W. Shih,
Snapback repellers and homoclinic orbits for multi-dimensional maps, J. Math. Anal. Appl., 386 (2012), 387-400.
doi: 10.1016/j.jmaa.2011.08.011. |
[14] |
F. R. Marotto,
Snapback repellers imply chaos in $\mathbb{R}^{n}$, J. Math. Anal. Appl., 63 (1978), 199-223.
doi: 10.1016/0022-247X(78)90115-4. |
[15] |
F. R. Marotto,
On redefining a snapback repeller, Chaos, Solitons, and Fractals, 25 (2005), 25-28.
doi: 10.1016/j.chaos.2004.10.003. |
[16] |
R. E. Moore and F. Bierbaum,
Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979. |
[17] |
C.-C. Peng,
Numerical computation of orbits and rigorous verification of existence of snapback repellers, Chaos, 17 (2007), 013107, 8pp.
doi: 10.1063/1.2430907. |
[18] |
Y. Shi and P. Yu,
Chaos induced by regular snapback repellers, J. Math. Anal. Appl., 337 (2008), 1480-1494.
doi: 10.1016/j.jmaa.2007.05.005. |
[19] |
J. Sugie,
Nonexistence of periodic solutions for the FitzHugh nerve system, Quart. Appl. Math., 49 (1991), 543-554.
doi: 10.1090/qam/1121685. |
[20] |
Y. Zhang, Q. Zhang, L. Zhao and C. Yang,
Dynamical behaviors and chaos control in a discrete functional response model, Chaos, Solitons, and Fractals, 34 (2007), 1318-1327.
doi: 10.1016/j.chaos.2006.04.032. |
show all references
References:
[1] |
G. Alefeld and J. Herzberger,
Introduction to Interval Computations, in Academic Press, NY, 1983. |
[2] |
G. Alefeld, Inclusion methods for systems of nonlinear equations-the interval Newton method
and modifications, Topics in Validated Computations, Elsevier, Amsterdam, 5 (1994), 7-26. |
[3] |
Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka and P. Pilarczyk,
A database schema for the analysis of global dynamics of multi parameter systems, SIAM J. Appl. Dyn. Syst., 8 (2009), 757-789.
doi: 10.1137/080734935. |
[4] |
J. R. Beddington, C. A. Free and J. H. Lawton,
Dynamic complexity in predator-prey models framed in difference equations, Nature, 255 (1975), 58-60.
|
[5] |
G. Chen, S.-B. Hsu and J. Zhou,
Snapback repellers as a cause of chaotic vibration of the wave equation with a van der Pol boundary condition and energy injection at the middle of the span, J. Math. Phys., 39 (1998), 6459-6489.
doi: 10.1063/1.532670. |
[6] |
S. S. Chen and C. W. Shih,
Transversal homoclinic orbits in a transiently chaotic neural network, Chaos, 12 (2002), 654-671.
doi: 10.1063/1.1488895. |
[7] |
L. Gardini and F. Tramontana,
Snapback repellers and chaotic attractors, Physical Rev. E, 81 (2010), 046202, 5pp.
doi: 10.1103/PhysRevE.81.046202. |
[8] |
L. Gardini, I. Sushko, V. Avrutin and M. Schanz,
Critical homoclinic orbits lead to snapback repellers, Chaos, Solitons, and Fractals, 44 (2011), 433-449.
doi: 10.1016/j.chaos.2011.03.004. |
[9] |
Z. Jing, Z. Jia and Y. Chang,
Chaos behavior in the discrete FitzHugh nerve system, China Set. A-Math, 44 (2001), 1571-1578.
doi: 10.1007/BF02880796. |
[10] |
C. Li and G. Chen,
An improved version of the Marotto theorem, Chaos, Solitons, and Fractals, 18 (2003), 69-77.
doi: 10.1016/S0960-0779(02)00605-7. |
[11] |
M.-C. Li, M.-J. Lyu and P. Zgliczyński,
Topological entropy for multidimensional perturbations of snapback repellers and one-dimensional maps, Nonlinearity, 21 (2008), 2555-2567.
doi: 10.1088/0951-7715/21/11/005. |
[12] |
T.-Y. Li and J. A. Yorke,
Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.
doi: 10.1080/00029890.1975.11994008. |
[13] |
K.-L. Liao and C.-W. Shih,
Snapback repellers and homoclinic orbits for multi-dimensional maps, J. Math. Anal. Appl., 386 (2012), 387-400.
doi: 10.1016/j.jmaa.2011.08.011. |
[14] |
F. R. Marotto,
Snapback repellers imply chaos in $\mathbb{R}^{n}$, J. Math. Anal. Appl., 63 (1978), 199-223.
doi: 10.1016/0022-247X(78)90115-4. |
[15] |
F. R. Marotto,
On redefining a snapback repeller, Chaos, Solitons, and Fractals, 25 (2005), 25-28.
doi: 10.1016/j.chaos.2004.10.003. |
[16] |
R. E. Moore and F. Bierbaum,
Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979. |
[17] |
C.-C. Peng,
Numerical computation of orbits and rigorous verification of existence of snapback repellers, Chaos, 17 (2007), 013107, 8pp.
doi: 10.1063/1.2430907. |
[18] |
Y. Shi and P. Yu,
Chaos induced by regular snapback repellers, J. Math. Anal. Appl., 337 (2008), 1480-1494.
doi: 10.1016/j.jmaa.2007.05.005. |
[19] |
J. Sugie,
Nonexistence of periodic solutions for the FitzHugh nerve system, Quart. Appl. Math., 49 (1991), 543-554.
doi: 10.1090/qam/1121685. |
[20] |
Y. Zhang, Q. Zhang, L. Zhao and C. Yang,
Dynamical behaviors and chaos control in a discrete functional response model, Chaos, Solitons, and Fractals, 34 (2007), 1318-1327.
doi: 10.1016/j.chaos.2006.04.032. |
[1] |
Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1097-1108. doi: 10.3934/dcdsb.2019210 |
[2] |
Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883 |
[3] |
Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485 |
[4] |
Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293 |
[5] |
W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351 |
[6] |
Martin Wechselberger, Warren Weckesser. Homoclinic clusters and chaos associated with a folded node in a stellate cell model. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 829-850. doi: 10.3934/dcdss.2009.2.829 |
[7] |
Bao Qing Hu, Song Wang. A novel approach in uncertain programming part I: new arithmetic and order relation for interval numbers. Journal of Industrial and Management Optimization, 2006, 2 (4) : 351-371. doi: 10.3934/jimo.2006.2.351 |
[8] |
Marta Štefánková. Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3435-3443. doi: 10.3934/dcds.2016.36.3435 |
[9] |
Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, 2021, 29 (5) : 2987-3015. doi: 10.3934/era.2021023 |
[10] |
Peng Chen, Linfeng Mei, Xianhua Tang. Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021279 |
[11] |
Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 |
[12] |
Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015 |
[13] |
Tanja Eisner, Rainer Nagel. Arithmetic progressions -- an operator theoretic view. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 657-667. doi: 10.3934/dcdss.2013.6.657 |
[14] |
Mehdi Pourbarat. On the arithmetic difference of middle Cantor sets. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4259-4278. doi: 10.3934/dcds.2018186 |
[15] |
Wei Lin, Jianhong Wu, Guanrong Chen. Generalized snap-back repeller and semi-conjugacy to shift operators of piecewise continuous transformations. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 103-119. doi: 10.3934/dcds.2007.19.103 |
[16] |
Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109 |
[17] |
Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281 |
[18] |
Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91 |
[19] |
Stefano Galatolo. Orbit complexity and data compression. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477 |
[20] |
Peng Sun. Minimality and gluing orbit property. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]