
-
Previous Article
Mori-Zwanzig reduced models for uncertainty quantification
- JCD Home
- This Issue
- Next Article
Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations
1. | Imperial College London, Department of Mathematics, 180 Queen's Gate, London SW7 2AZ, United Kingdomand |
2. | École Normale Supérieure, Laboratoire de Météorologie Dynamique, 24 Rue Lhomond, 75005 Paris, France |
3. | CNRS/École Normale Supérieure, Laboratoire de Météorologie Dynamique, 24 Rue Lhomond, 75005 Paris, France |
This paper presents a geometric variational discretization of compressible fluid dynamics. The numerical scheme is obtained by discretizing, in a structure preserving way, the Lie group formulation of fluid dynamics on diffeomorphism groups and the associated variational principles. Our framework applies to irregular mesh discretizations in 2D and 3D. It systematically extends work previously made for incompressible fluids to the compressible case. We consider in detail the numerical scheme on 2D irregular simplicial meshes and evaluate the scheme numerically for the rotating shallow water equations. In particular, we investigate whether the scheme conserves stationary solutions, represents well the nonlinear dynamics, and approximates well the frequency relations of the continuous equations, while preserving conservation laws such as mass and total energy.
References:
[1] |
V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, Grenoble, 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[2] |
R. E. Bank and J. Xu,
Asymptotically exact a posteriori error estimators, part Ⅰ: Grids with superconvergence, SIAM Journal on Numerical Analysis, 41 (2003), 2294-2312.
doi: 10.1137/S003614290139874X. |
[3] |
W. Bauer, Toward Goal-Oriented R-adaptive Models in Geophysical Fluid Dynamics using a Generalized Discretization Approach, Ph.D thesis, Department of Geosciences, University of Hamburg, 2013. Google Scholar |
[4] |
W. Bauer, M. Baumann, L. Scheck, A. Gassmann, V. Heuveline and S. C. Jones,
Simulation of tropical-cyclone-like vortices in shallow-water icon-hex using goal-oriented r-adaptivity, Theoretical and Computational Fluid Dynamics, 28 (2014), 107-128.
doi: 10.1007/s00162-013-0303-4. |
[5] |
W. Bauer,
A new hierarchically-structured $n$-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7 (2016), 31-101.
doi: 10.1007/s13137-015-0074-8. |
[6] |
W. Bauer and F. Gay-Balmaz, Variational integrators for the anelastic and pseudo-incompressible flows, preprint, 2017, arXiv: 1701.06448. Google Scholar |
[7] |
A. M. Bloch, Nonholonomic Mechanics and Control, Volume 24 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 2003. With the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, and with scientific input from P. S. Krishnaprasad, R. M. Murray and D. Zenkov.
doi: 10.1007/b97376. |
[8] |
N. Bou-Rabee and J. E. Marsden,
Hamilton-Pontryagin integrators on Lie groups. Part Ⅰ: Introduction and structure-preserving properties, Foundations of Computational Mathematics, 9 (2009), 197-219.
doi: 10.1007/s10208-008-9030-4. |
[9] |
R. Brecht, W. Bauer, A. Bihlo, F. Gay-Balmaz and S. MacLachlan, Variational integrator for the rotating shallow-water equations on the sphere, preprint, 2018, arXiv: 1808.10507. Google Scholar |
[10] |
W. Cao,
Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes, Math. Comput., 84 (2015), 89-117.
doi: 10.1090/S0025-5718-2014-02846-9. |
[11] |
M. J. P. Cullen, A Mathematical Theory of Large-scale Atmosphere/ocean Flow, Imperial College Press, London, 2006.
doi: 10.1142/p375.![]() |
[12] |
F. Demoures, F. Gay-Balmaz and T. S. Ratiu, Multisymplectic variational integrators for nonsmooth Lagrangian continuum mechanics, Forum of Mathematics, Sigma, 4 (2016), e19, 54 pp.
doi: 10.1017/fms.2016.17. |
[13] |
F. Demoures, F. Gay-Balmaz, M. Kobilarov and T. S. Ratiu,
Multisymplectic Lie group variational integrators for a geometrically exact beam in $ \mathbb{R} ^3 $, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 3492-3512.
doi: 10.1016/j.cnsns.2014.02.032. |
[14] |
M. Desbrun, E. Gawlik, F. Gay-Balmaz and V. Zeitlin,
Variational discretization for rotating stratified fluids, Disc. Cont. Dyn. Syst. Series A, 34 (2014), 479-511.
doi: 10.3934/dcds.2014.34.477. |
[15] |
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer, 2004.
doi: 10.1007/978-1-4757-4355-5. |
[16] |
E. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun,
Geometric, variational discretization of continuum theories, Physica D, 240 (2011), 1724-1760.
doi: 10.1016/j.physd.2011.07.011. |
[17] |
M. Giorgetta, T. Hundertmark, P. Korn, S. Reich and M. Restelli, Conservative space and time regularizations for the icon model, Technical report, Berichte zur Erdsystemforschung, Report 67, MPI for Meteorology, Hamburg, 2009. Google Scholar |
[18] |
F. Gay-Balmaz and V. Putkaradze,
Variational discretizations for the dynamics of fluid-conveying flexible tubes, C. R. Mécanique, 344 (2016), 769-775.
doi: 10.1016/j.crme.2016.08.004. |
[19] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag, 2006. |
[20] |
D. D. Holm, J. E. Marsden and T. S. Ratiu,
The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[21] |
A. Lew, J. E. Marsden, M. Ortiz and M. West,
Asynchronous variational integrators, Arch. Rat. Mech. Anal., 167 (2003), 85-146.
doi: 10.1007/s00205-002-0212-y. |
[22] |
Y. Huang and J. Xu,
Superconvergence of quadratic finite elements on mildly structured grids, Mathematics of Computation, 77 (2008), 1253-1268.
doi: 10.1090/S0025-5718-08-02051-6. |
[23] |
R. J. LeVeque,
Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm, J. Comput. Phys., 146 (1998), 346-365.
doi: 10.1006/jcph.1998.6058. |
[24] |
B. Liu, G. Mason, J. Hodgson, Y. Tong and M. Desbrun, Model-reduced variational fluid simulation, ACM Trans. Graph. (SIG Asia), 34 (2015), Art. 244.
doi: 10.1145/2816795.2818130. |
[25] |
J. E. Marsden and M. West,
Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.
doi: 10.1017/S096249290100006X. |
[26] |
J. E. Marsden, G. W. Patrick and S. Shkoller,
Multisymplectic geometry, variational integrators and nonlinear PDEs, Comm. Math. Phys., 199 (1998), 351-395.
doi: 10.1007/s002200050505. |
[27] |
D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden and M. Desbrun,
Structure-preserving discretization of incompressible fluids, Physica D, 240 (2010), 443-458.
doi: 10.1016/j.physd.2010.10.012. |
[28] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer Verlag, New York, 1979. Google Scholar |
[29] |
S. Reich,
Linearly implicit time stepping methods for numerical weather prediction, BIT Numerical Mathematics, 46 (2006), 607-616.
doi: 10.1007/s10543-006-0065-0. |
[30] |
S. Reich, N. Wood and A. Staniforth,
Semi-implicit methods, nonlinear balance, and regularized equations, Atmospheric Science Letters, 8 (2007), 1-6.
doi: 10.1002/asl.142. |
[31] |
T. D. Ringler, J. Thuburn, J. B. Klemp and W. C. Skamarock,
A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids, J. Comput. Phys., 229 (2010), 3065-3090.
doi: 10.1016/j.jcp.2009.12.007. |
[32] |
A. Staniforth and A. A. White,
Some exact solutions of geophysical fluid-dynamics equations for testing models in spherical and plane geometry, Q. J. R. Meteorol. Soc., 133 (2007), 1605-1614.
doi: 10.1002/qj.122. |
[33] |
A. Staniforth, N. Wood and S. Reich,
A time-staggered semi-lagrangian discretization of the rotating shallow-water equations, Quarterly Journal of the Royal Meteorological Society, 132 (2006), 3107-3116.
doi: 10.1256/qj.06.30. |
[34] |
A. Stegner and D. Dritschel,
A numerical investigation of the stability of isolated shallow-water vortices, J. Phys. Ocean., 30 (2000), 2562-2573.
doi: 10.1175/1520-0485(2000)030<2562:ANIOTS>2.0.CO;2. |
[35] |
J. Thuburn, T. D. Ringler, W. C. Skamarock and J. B. Klemp,
Numerical representation of geostrophic modes on arbitrarily structured C-grids, J. Comput. Phys., 228 (2009), 8321-8335.
doi: 10.1016/j.jcp.2009.08.006. |
[36] |
J. Thuburn and C. J. Cotter,
A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes, Journal of Computational Physics, 290 (2015), 274-297.
doi: 10.1016/j.jcp.2015.02.045. |
[37] |
D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob and P. N. Swarztrauber,
A standard test set for numerical approximations to the shallow-water equations in spherical geometry, J. Comput. Phys., 102 (1992), 221-224.
doi: 10.1016/S0021-9991(05)80016-6. |
[38] |
V. Zeitlin (Ed.), Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances, Elsevier, New York, 2007. Google Scholar |
show all references
References:
[1] |
V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, Grenoble, 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[2] |
R. E. Bank and J. Xu,
Asymptotically exact a posteriori error estimators, part Ⅰ: Grids with superconvergence, SIAM Journal on Numerical Analysis, 41 (2003), 2294-2312.
doi: 10.1137/S003614290139874X. |
[3] |
W. Bauer, Toward Goal-Oriented R-adaptive Models in Geophysical Fluid Dynamics using a Generalized Discretization Approach, Ph.D thesis, Department of Geosciences, University of Hamburg, 2013. Google Scholar |
[4] |
W. Bauer, M. Baumann, L. Scheck, A. Gassmann, V. Heuveline and S. C. Jones,
Simulation of tropical-cyclone-like vortices in shallow-water icon-hex using goal-oriented r-adaptivity, Theoretical and Computational Fluid Dynamics, 28 (2014), 107-128.
doi: 10.1007/s00162-013-0303-4. |
[5] |
W. Bauer,
A new hierarchically-structured $n$-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7 (2016), 31-101.
doi: 10.1007/s13137-015-0074-8. |
[6] |
W. Bauer and F. Gay-Balmaz, Variational integrators for the anelastic and pseudo-incompressible flows, preprint, 2017, arXiv: 1701.06448. Google Scholar |
[7] |
A. M. Bloch, Nonholonomic Mechanics and Control, Volume 24 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 2003. With the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, and with scientific input from P. S. Krishnaprasad, R. M. Murray and D. Zenkov.
doi: 10.1007/b97376. |
[8] |
N. Bou-Rabee and J. E. Marsden,
Hamilton-Pontryagin integrators on Lie groups. Part Ⅰ: Introduction and structure-preserving properties, Foundations of Computational Mathematics, 9 (2009), 197-219.
doi: 10.1007/s10208-008-9030-4. |
[9] |
R. Brecht, W. Bauer, A. Bihlo, F. Gay-Balmaz and S. MacLachlan, Variational integrator for the rotating shallow-water equations on the sphere, preprint, 2018, arXiv: 1808.10507. Google Scholar |
[10] |
W. Cao,
Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes, Math. Comput., 84 (2015), 89-117.
doi: 10.1090/S0025-5718-2014-02846-9. |
[11] |
M. J. P. Cullen, A Mathematical Theory of Large-scale Atmosphere/ocean Flow, Imperial College Press, London, 2006.
doi: 10.1142/p375.![]() |
[12] |
F. Demoures, F. Gay-Balmaz and T. S. Ratiu, Multisymplectic variational integrators for nonsmooth Lagrangian continuum mechanics, Forum of Mathematics, Sigma, 4 (2016), e19, 54 pp.
doi: 10.1017/fms.2016.17. |
[13] |
F. Demoures, F. Gay-Balmaz, M. Kobilarov and T. S. Ratiu,
Multisymplectic Lie group variational integrators for a geometrically exact beam in $ \mathbb{R} ^3 $, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 3492-3512.
doi: 10.1016/j.cnsns.2014.02.032. |
[14] |
M. Desbrun, E. Gawlik, F. Gay-Balmaz and V. Zeitlin,
Variational discretization for rotating stratified fluids, Disc. Cont. Dyn. Syst. Series A, 34 (2014), 479-511.
doi: 10.3934/dcds.2014.34.477. |
[15] |
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer, 2004.
doi: 10.1007/978-1-4757-4355-5. |
[16] |
E. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun,
Geometric, variational discretization of continuum theories, Physica D, 240 (2011), 1724-1760.
doi: 10.1016/j.physd.2011.07.011. |
[17] |
M. Giorgetta, T. Hundertmark, P. Korn, S. Reich and M. Restelli, Conservative space and time regularizations for the icon model, Technical report, Berichte zur Erdsystemforschung, Report 67, MPI for Meteorology, Hamburg, 2009. Google Scholar |
[18] |
F. Gay-Balmaz and V. Putkaradze,
Variational discretizations for the dynamics of fluid-conveying flexible tubes, C. R. Mécanique, 344 (2016), 769-775.
doi: 10.1016/j.crme.2016.08.004. |
[19] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag, 2006. |
[20] |
D. D. Holm, J. E. Marsden and T. S. Ratiu,
The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[21] |
A. Lew, J. E. Marsden, M. Ortiz and M. West,
Asynchronous variational integrators, Arch. Rat. Mech. Anal., 167 (2003), 85-146.
doi: 10.1007/s00205-002-0212-y. |
[22] |
Y. Huang and J. Xu,
Superconvergence of quadratic finite elements on mildly structured grids, Mathematics of Computation, 77 (2008), 1253-1268.
doi: 10.1090/S0025-5718-08-02051-6. |
[23] |
R. J. LeVeque,
Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm, J. Comput. Phys., 146 (1998), 346-365.
doi: 10.1006/jcph.1998.6058. |
[24] |
B. Liu, G. Mason, J. Hodgson, Y. Tong and M. Desbrun, Model-reduced variational fluid simulation, ACM Trans. Graph. (SIG Asia), 34 (2015), Art. 244.
doi: 10.1145/2816795.2818130. |
[25] |
J. E. Marsden and M. West,
Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.
doi: 10.1017/S096249290100006X. |
[26] |
J. E. Marsden, G. W. Patrick and S. Shkoller,
Multisymplectic geometry, variational integrators and nonlinear PDEs, Comm. Math. Phys., 199 (1998), 351-395.
doi: 10.1007/s002200050505. |
[27] |
D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden and M. Desbrun,
Structure-preserving discretization of incompressible fluids, Physica D, 240 (2010), 443-458.
doi: 10.1016/j.physd.2010.10.012. |
[28] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer Verlag, New York, 1979. Google Scholar |
[29] |
S. Reich,
Linearly implicit time stepping methods for numerical weather prediction, BIT Numerical Mathematics, 46 (2006), 607-616.
doi: 10.1007/s10543-006-0065-0. |
[30] |
S. Reich, N. Wood and A. Staniforth,
Semi-implicit methods, nonlinear balance, and regularized equations, Atmospheric Science Letters, 8 (2007), 1-6.
doi: 10.1002/asl.142. |
[31] |
T. D. Ringler, J. Thuburn, J. B. Klemp and W. C. Skamarock,
A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids, J. Comput. Phys., 229 (2010), 3065-3090.
doi: 10.1016/j.jcp.2009.12.007. |
[32] |
A. Staniforth and A. A. White,
Some exact solutions of geophysical fluid-dynamics equations for testing models in spherical and plane geometry, Q. J. R. Meteorol. Soc., 133 (2007), 1605-1614.
doi: 10.1002/qj.122. |
[33] |
A. Staniforth, N. Wood and S. Reich,
A time-staggered semi-lagrangian discretization of the rotating shallow-water equations, Quarterly Journal of the Royal Meteorological Society, 132 (2006), 3107-3116.
doi: 10.1256/qj.06.30. |
[34] |
A. Stegner and D. Dritschel,
A numerical investigation of the stability of isolated shallow-water vortices, J. Phys. Ocean., 30 (2000), 2562-2573.
doi: 10.1175/1520-0485(2000)030<2562:ANIOTS>2.0.CO;2. |
[35] |
J. Thuburn, T. D. Ringler, W. C. Skamarock and J. B. Klemp,
Numerical representation of geostrophic modes on arbitrarily structured C-grids, J. Comput. Phys., 228 (2009), 8321-8335.
doi: 10.1016/j.jcp.2009.08.006. |
[36] |
J. Thuburn and C. J. Cotter,
A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes, Journal of Computational Physics, 290 (2015), 274-297.
doi: 10.1016/j.jcp.2015.02.045. |
[37] |
D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob and P. N. Swarztrauber,
A standard test set for numerical approximations to the shallow-water equations in spherical geometry, J. Comput. Phys., 102 (1992), 221-224.
doi: 10.1016/S0021-9991(05)80016-6. |
[38] |
V. Zeitlin (Ed.), Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances, Elsevier, New York, 2007. Google Scholar |
















Continuous diffeomorphism | Discrete diffeomorphisms |
Lie algebra | Discrete diffeomorphisms |
Group action on functions | Group action on discrete functions |
Lie algebra action on functions | Lie algebra action on discrete functions |
Group action on densities | Group action on discrete densities |
Lie algebra action on densities | Lie algebra action on discrete densities |
Hamilton's principle | Lagrande-d'Alembert principle |
for arbitrary variations |
for variations |
Eulerian velocity and density | Eulerian discrete velocity and discrete density |
Euler-Poincaré principle | Euler-Poincaré-d'Alembert principle |
Compressible Euler equations | Discrete compressible Euler equations |
Form Ⅰ: |
Form Ⅰ: on 2D simplicial gridEquation (43) |
Form Ⅱ : |
Form Ⅱ: on 2D simplicial gridEquation (40) |
Continuous diffeomorphism | Discrete diffeomorphisms |
Lie algebra | Discrete diffeomorphisms |
Group action on functions | Group action on discrete functions |
Lie algebra action on functions | Lie algebra action on discrete functions |
Group action on densities | Group action on discrete densities |
Lie algebra action on densities | Lie algebra action on discrete densities |
Hamilton's principle | Lagrande-d'Alembert principle |
for arbitrary variations |
for variations |
Eulerian velocity and density | Eulerian discrete velocity and discrete density |
Euler-Poincaré principle | Euler-Poincaré-d'Alembert principle |
Compressible Euler equations | Discrete compressible Euler equations |
Form Ⅰ: |
Form Ⅰ: on 2D simplicial gridEquation (43) |
Form Ⅱ : |
Form Ⅱ: on 2D simplicial gridEquation (40) |
[1] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[2] |
Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 |
[3] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[4] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[5] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[6] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[7] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[8] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[9] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[10] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[11] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[12] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[13] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[14] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[15] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[16] |
Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 |
[17] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[18] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[19] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[20] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]