
-
Previous Article
Mori-Zwanzig reduced models for uncertainty quantification
- JCD Home
- This Issue
- Next Article
Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations
1. | Imperial College London, Department of Mathematics, 180 Queen's Gate, London SW7 2AZ, United Kingdomand |
2. | École Normale Supérieure, Laboratoire de Météorologie Dynamique, 24 Rue Lhomond, 75005 Paris, France |
3. | CNRS/École Normale Supérieure, Laboratoire de Météorologie Dynamique, 24 Rue Lhomond, 75005 Paris, France |
This paper presents a geometric variational discretization of compressible fluid dynamics. The numerical scheme is obtained by discretizing, in a structure preserving way, the Lie group formulation of fluid dynamics on diffeomorphism groups and the associated variational principles. Our framework applies to irregular mesh discretizations in 2D and 3D. It systematically extends work previously made for incompressible fluids to the compressible case. We consider in detail the numerical scheme on 2D irregular simplicial meshes and evaluate the scheme numerically for the rotating shallow water equations. In particular, we investigate whether the scheme conserves stationary solutions, represents well the nonlinear dynamics, and approximates well the frequency relations of the continuous equations, while preserving conservation laws such as mass and total energy.
References:
[1] |
V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, Grenoble, 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[2] |
R. E. Bank and J. Xu,
Asymptotically exact a posteriori error estimators, part Ⅰ: Grids with superconvergence, SIAM Journal on Numerical Analysis, 41 (2003), 2294-2312.
doi: 10.1137/S003614290139874X. |
[3] |
W. Bauer, Toward Goal-Oriented R-adaptive Models in Geophysical Fluid Dynamics using a Generalized Discretization Approach, Ph.D thesis, Department of Geosciences, University of Hamburg, 2013. |
[4] |
W. Bauer, M. Baumann, L. Scheck, A. Gassmann, V. Heuveline and S. C. Jones,
Simulation of tropical-cyclone-like vortices in shallow-water icon-hex using goal-oriented r-adaptivity, Theoretical and Computational Fluid Dynamics, 28 (2014), 107-128.
doi: 10.1007/s00162-013-0303-4. |
[5] |
W. Bauer,
A new hierarchically-structured $n$-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7 (2016), 31-101.
doi: 10.1007/s13137-015-0074-8. |
[6] |
W. Bauer and F. Gay-Balmaz, Variational integrators for the anelastic and pseudo-incompressible flows, preprint, 2017, arXiv: 1701.06448. |
[7] |
A. M. Bloch, Nonholonomic Mechanics and Control, Volume 24 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 2003. With the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, and with scientific input from P. S. Krishnaprasad, R. M. Murray and D. Zenkov.
doi: 10.1007/b97376. |
[8] |
N. Bou-Rabee and J. E. Marsden,
Hamilton-Pontryagin integrators on Lie groups. Part Ⅰ: Introduction and structure-preserving properties, Foundations of Computational Mathematics, 9 (2009), 197-219.
doi: 10.1007/s10208-008-9030-4. |
[9] |
R. Brecht, W. Bauer, A. Bihlo, F. Gay-Balmaz and S. MacLachlan, Variational integrator for the rotating shallow-water equations on the sphere, preprint, 2018, arXiv: 1808.10507. |
[10] |
W. Cao,
Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes, Math. Comput., 84 (2015), 89-117.
doi: 10.1090/S0025-5718-2014-02846-9. |
[11] |
M. J. P. Cullen, A Mathematical Theory of Large-scale Atmosphere/ocean Flow, Imperial College Press, London, 2006.
doi: 10.1142/p375.![]() ![]() |
[12] |
F. Demoures, F. Gay-Balmaz and T. S. Ratiu, Multisymplectic variational integrators for nonsmooth Lagrangian continuum mechanics, Forum of Mathematics, Sigma, 4 (2016), e19, 54 pp.
doi: 10.1017/fms.2016.17. |
[13] |
F. Demoures, F. Gay-Balmaz, M. Kobilarov and T. S. Ratiu,
Multisymplectic Lie group variational integrators for a geometrically exact beam in $ \mathbb{R} ^3 $, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 3492-3512.
doi: 10.1016/j.cnsns.2014.02.032. |
[14] |
M. Desbrun, E. Gawlik, F. Gay-Balmaz and V. Zeitlin,
Variational discretization for rotating stratified fluids, Disc. Cont. Dyn. Syst. Series A, 34 (2014), 479-511.
doi: 10.3934/dcds.2014.34.477. |
[15] |
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer, 2004.
doi: 10.1007/978-1-4757-4355-5. |
[16] |
E. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun,
Geometric, variational discretization of continuum theories, Physica D, 240 (2011), 1724-1760.
doi: 10.1016/j.physd.2011.07.011. |
[17] |
M. Giorgetta, T. Hundertmark, P. Korn, S. Reich and M. Restelli, Conservative space and time regularizations for the icon model, Technical report, Berichte zur Erdsystemforschung, Report 67, MPI for Meteorology, Hamburg, 2009. |
[18] |
F. Gay-Balmaz and V. Putkaradze,
Variational discretizations for the dynamics of fluid-conveying flexible tubes, C. R. Mécanique, 344 (2016), 769-775.
doi: 10.1016/j.crme.2016.08.004. |
[19] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag, 2006. |
[20] |
D. D. Holm, J. E. Marsden and T. S. Ratiu,
The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[21] |
A. Lew, J. E. Marsden, M. Ortiz and M. West,
Asynchronous variational integrators, Arch. Rat. Mech. Anal., 167 (2003), 85-146.
doi: 10.1007/s00205-002-0212-y. |
[22] |
Y. Huang and J. Xu,
Superconvergence of quadratic finite elements on mildly structured grids, Mathematics of Computation, 77 (2008), 1253-1268.
doi: 10.1090/S0025-5718-08-02051-6. |
[23] |
R. J. LeVeque,
Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm, J. Comput. Phys., 146 (1998), 346-365.
doi: 10.1006/jcph.1998.6058. |
[24] |
B. Liu, G. Mason, J. Hodgson, Y. Tong and M. Desbrun, Model-reduced variational fluid simulation, ACM Trans. Graph. (SIG Asia), 34 (2015), Art. 244.
doi: 10.1145/2816795.2818130. |
[25] |
J. E. Marsden and M. West,
Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.
doi: 10.1017/S096249290100006X. |
[26] |
J. E. Marsden, G. W. Patrick and S. Shkoller,
Multisymplectic geometry, variational integrators and nonlinear PDEs, Comm. Math. Phys., 199 (1998), 351-395.
doi: 10.1007/s002200050505. |
[27] |
D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden and M. Desbrun,
Structure-preserving discretization of incompressible fluids, Physica D, 240 (2010), 443-458.
doi: 10.1016/j.physd.2010.10.012. |
[28] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer Verlag, New York, 1979. |
[29] |
S. Reich,
Linearly implicit time stepping methods for numerical weather prediction, BIT Numerical Mathematics, 46 (2006), 607-616.
doi: 10.1007/s10543-006-0065-0. |
[30] |
S. Reich, N. Wood and A. Staniforth,
Semi-implicit methods, nonlinear balance, and regularized equations, Atmospheric Science Letters, 8 (2007), 1-6.
doi: 10.1002/asl.142. |
[31] |
T. D. Ringler, J. Thuburn, J. B. Klemp and W. C. Skamarock,
A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids, J. Comput. Phys., 229 (2010), 3065-3090.
doi: 10.1016/j.jcp.2009.12.007. |
[32] |
A. Staniforth and A. A. White,
Some exact solutions of geophysical fluid-dynamics equations for testing models in spherical and plane geometry, Q. J. R. Meteorol. Soc., 133 (2007), 1605-1614.
doi: 10.1002/qj.122. |
[33] |
A. Staniforth, N. Wood and S. Reich,
A time-staggered semi-lagrangian discretization of the rotating shallow-water equations, Quarterly Journal of the Royal Meteorological Society, 132 (2006), 3107-3116.
doi: 10.1256/qj.06.30. |
[34] |
A. Stegner and D. Dritschel,
A numerical investigation of the stability of isolated shallow-water vortices, J. Phys. Ocean., 30 (2000), 2562-2573.
doi: 10.1175/1520-0485(2000)030<2562:ANIOTS>2.0.CO;2. |
[35] |
J. Thuburn, T. D. Ringler, W. C. Skamarock and J. B. Klemp,
Numerical representation of geostrophic modes on arbitrarily structured C-grids, J. Comput. Phys., 228 (2009), 8321-8335.
doi: 10.1016/j.jcp.2009.08.006. |
[36] |
J. Thuburn and C. J. Cotter,
A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes, Journal of Computational Physics, 290 (2015), 274-297.
doi: 10.1016/j.jcp.2015.02.045. |
[37] |
D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob and P. N. Swarztrauber,
A standard test set for numerical approximations to the shallow-water equations in spherical geometry, J. Comput. Phys., 102 (1992), 221-224.
doi: 10.1016/S0021-9991(05)80016-6. |
[38] |
V. Zeitlin (Ed.), Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances, Elsevier, New York, 2007. |
show all references
References:
[1] |
V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, Grenoble, 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[2] |
R. E. Bank and J. Xu,
Asymptotically exact a posteriori error estimators, part Ⅰ: Grids with superconvergence, SIAM Journal on Numerical Analysis, 41 (2003), 2294-2312.
doi: 10.1137/S003614290139874X. |
[3] |
W. Bauer, Toward Goal-Oriented R-adaptive Models in Geophysical Fluid Dynamics using a Generalized Discretization Approach, Ph.D thesis, Department of Geosciences, University of Hamburg, 2013. |
[4] |
W. Bauer, M. Baumann, L. Scheck, A. Gassmann, V. Heuveline and S. C. Jones,
Simulation of tropical-cyclone-like vortices in shallow-water icon-hex using goal-oriented r-adaptivity, Theoretical and Computational Fluid Dynamics, 28 (2014), 107-128.
doi: 10.1007/s00162-013-0303-4. |
[5] |
W. Bauer,
A new hierarchically-structured $n$-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7 (2016), 31-101.
doi: 10.1007/s13137-015-0074-8. |
[6] |
W. Bauer and F. Gay-Balmaz, Variational integrators for the anelastic and pseudo-incompressible flows, preprint, 2017, arXiv: 1701.06448. |
[7] |
A. M. Bloch, Nonholonomic Mechanics and Control, Volume 24 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 2003. With the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, and with scientific input from P. S. Krishnaprasad, R. M. Murray and D. Zenkov.
doi: 10.1007/b97376. |
[8] |
N. Bou-Rabee and J. E. Marsden,
Hamilton-Pontryagin integrators on Lie groups. Part Ⅰ: Introduction and structure-preserving properties, Foundations of Computational Mathematics, 9 (2009), 197-219.
doi: 10.1007/s10208-008-9030-4. |
[9] |
R. Brecht, W. Bauer, A. Bihlo, F. Gay-Balmaz and S. MacLachlan, Variational integrator for the rotating shallow-water equations on the sphere, preprint, 2018, arXiv: 1808.10507. |
[10] |
W. Cao,
Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes, Math. Comput., 84 (2015), 89-117.
doi: 10.1090/S0025-5718-2014-02846-9. |
[11] |
M. J. P. Cullen, A Mathematical Theory of Large-scale Atmosphere/ocean Flow, Imperial College Press, London, 2006.
doi: 10.1142/p375.![]() ![]() |
[12] |
F. Demoures, F. Gay-Balmaz and T. S. Ratiu, Multisymplectic variational integrators for nonsmooth Lagrangian continuum mechanics, Forum of Mathematics, Sigma, 4 (2016), e19, 54 pp.
doi: 10.1017/fms.2016.17. |
[13] |
F. Demoures, F. Gay-Balmaz, M. Kobilarov and T. S. Ratiu,
Multisymplectic Lie group variational integrators for a geometrically exact beam in $ \mathbb{R} ^3 $, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 3492-3512.
doi: 10.1016/j.cnsns.2014.02.032. |
[14] |
M. Desbrun, E. Gawlik, F. Gay-Balmaz and V. Zeitlin,
Variational discretization for rotating stratified fluids, Disc. Cont. Dyn. Syst. Series A, 34 (2014), 479-511.
doi: 10.3934/dcds.2014.34.477. |
[15] |
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer, 2004.
doi: 10.1007/978-1-4757-4355-5. |
[16] |
E. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun,
Geometric, variational discretization of continuum theories, Physica D, 240 (2011), 1724-1760.
doi: 10.1016/j.physd.2011.07.011. |
[17] |
M. Giorgetta, T. Hundertmark, P. Korn, S. Reich and M. Restelli, Conservative space and time regularizations for the icon model, Technical report, Berichte zur Erdsystemforschung, Report 67, MPI for Meteorology, Hamburg, 2009. |
[18] |
F. Gay-Balmaz and V. Putkaradze,
Variational discretizations for the dynamics of fluid-conveying flexible tubes, C. R. Mécanique, 344 (2016), 769-775.
doi: 10.1016/j.crme.2016.08.004. |
[19] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag, 2006. |
[20] |
D. D. Holm, J. E. Marsden and T. S. Ratiu,
The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[21] |
A. Lew, J. E. Marsden, M. Ortiz and M. West,
Asynchronous variational integrators, Arch. Rat. Mech. Anal., 167 (2003), 85-146.
doi: 10.1007/s00205-002-0212-y. |
[22] |
Y. Huang and J. Xu,
Superconvergence of quadratic finite elements on mildly structured grids, Mathematics of Computation, 77 (2008), 1253-1268.
doi: 10.1090/S0025-5718-08-02051-6. |
[23] |
R. J. LeVeque,
Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm, J. Comput. Phys., 146 (1998), 346-365.
doi: 10.1006/jcph.1998.6058. |
[24] |
B. Liu, G. Mason, J. Hodgson, Y. Tong and M. Desbrun, Model-reduced variational fluid simulation, ACM Trans. Graph. (SIG Asia), 34 (2015), Art. 244.
doi: 10.1145/2816795.2818130. |
[25] |
J. E. Marsden and M. West,
Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.
doi: 10.1017/S096249290100006X. |
[26] |
J. E. Marsden, G. W. Patrick and S. Shkoller,
Multisymplectic geometry, variational integrators and nonlinear PDEs, Comm. Math. Phys., 199 (1998), 351-395.
doi: 10.1007/s002200050505. |
[27] |
D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden and M. Desbrun,
Structure-preserving discretization of incompressible fluids, Physica D, 240 (2010), 443-458.
doi: 10.1016/j.physd.2010.10.012. |
[28] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer Verlag, New York, 1979. |
[29] |
S. Reich,
Linearly implicit time stepping methods for numerical weather prediction, BIT Numerical Mathematics, 46 (2006), 607-616.
doi: 10.1007/s10543-006-0065-0. |
[30] |
S. Reich, N. Wood and A. Staniforth,
Semi-implicit methods, nonlinear balance, and regularized equations, Atmospheric Science Letters, 8 (2007), 1-6.
doi: 10.1002/asl.142. |
[31] |
T. D. Ringler, J. Thuburn, J. B. Klemp and W. C. Skamarock,
A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids, J. Comput. Phys., 229 (2010), 3065-3090.
doi: 10.1016/j.jcp.2009.12.007. |
[32] |
A. Staniforth and A. A. White,
Some exact solutions of geophysical fluid-dynamics equations for testing models in spherical and plane geometry, Q. J. R. Meteorol. Soc., 133 (2007), 1605-1614.
doi: 10.1002/qj.122. |
[33] |
A. Staniforth, N. Wood and S. Reich,
A time-staggered semi-lagrangian discretization of the rotating shallow-water equations, Quarterly Journal of the Royal Meteorological Society, 132 (2006), 3107-3116.
doi: 10.1256/qj.06.30. |
[34] |
A. Stegner and D. Dritschel,
A numerical investigation of the stability of isolated shallow-water vortices, J. Phys. Ocean., 30 (2000), 2562-2573.
doi: 10.1175/1520-0485(2000)030<2562:ANIOTS>2.0.CO;2. |
[35] |
J. Thuburn, T. D. Ringler, W. C. Skamarock and J. B. Klemp,
Numerical representation of geostrophic modes on arbitrarily structured C-grids, J. Comput. Phys., 228 (2009), 8321-8335.
doi: 10.1016/j.jcp.2009.08.006. |
[36] |
J. Thuburn and C. J. Cotter,
A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes, Journal of Computational Physics, 290 (2015), 274-297.
doi: 10.1016/j.jcp.2015.02.045. |
[37] |
D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob and P. N. Swarztrauber,
A standard test set for numerical approximations to the shallow-water equations in spherical geometry, J. Comput. Phys., 102 (1992), 221-224.
doi: 10.1016/S0021-9991(05)80016-6. |
[38] |
V. Zeitlin (Ed.), Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances, Elsevier, New York, 2007. |
















Continuous diffeomorphism | Discrete diffeomorphisms |
Lie algebra | Discrete diffeomorphisms |
Group action on functions | Group action on discrete functions |
Lie algebra action on functions | Lie algebra action on discrete functions |
Group action on densities | Group action on discrete densities |
Lie algebra action on densities | Lie algebra action on discrete densities |
Hamilton's principle | Lagrande-d'Alembert principle |
for arbitrary variations |
for variations |
Eulerian velocity and density | Eulerian discrete velocity and discrete density |
Euler-Poincaré principle | Euler-Poincaré-d'Alembert principle |
Compressible Euler equations | Discrete compressible Euler equations |
Form Ⅰ: |
Form Ⅰ: on 2D simplicial gridEquation (43) |
Form Ⅱ : |
Form Ⅱ: on 2D simplicial gridEquation (40) |
Continuous diffeomorphism | Discrete diffeomorphisms |
Lie algebra | Discrete diffeomorphisms |
Group action on functions | Group action on discrete functions |
Lie algebra action on functions | Lie algebra action on discrete functions |
Group action on densities | Group action on discrete densities |
Lie algebra action on densities | Lie algebra action on discrete densities |
Hamilton's principle | Lagrande-d'Alembert principle |
for arbitrary variations |
for variations |
Eulerian velocity and density | Eulerian discrete velocity and discrete density |
Euler-Poincaré principle | Euler-Poincaré-d'Alembert principle |
Compressible Euler equations | Discrete compressible Euler equations |
Form Ⅰ: |
Form Ⅰ: on 2D simplicial gridEquation (43) |
Form Ⅱ : |
Form Ⅱ: on 2D simplicial gridEquation (40) |
[1] |
Emanuel-Ciprian Cismas. Euler-Poincaré-Arnold equations on semi-direct products II. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5993-6022. doi: 10.3934/dcds.2016063 |
[2] |
Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146 |
[3] |
Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015 |
[4] |
Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261 |
[5] |
Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093 |
[6] |
Vikas S. Krishnamurthy. The vorticity equation on a rotating sphere and the shallow fluid approximation. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6261-6276. doi: 10.3934/dcds.2019273 |
[7] |
Makoto Okumura, Daisuke Furihata. A structure-preserving scheme for the Allen–Cahn equation with a dynamic boundary condition. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4927-4960. doi: 10.3934/dcds.2020206 |
[8] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[9] |
Marcel Oliver, Sergiy Vasylkevych. Hamiltonian formalism for models of rotating shallow water in semigeostrophic scaling. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 827-846. doi: 10.3934/dcds.2011.31.827 |
[10] |
Lin Lu, Qi Wang, Yongzhong Song, Yushun Wang. Local structure-preserving algorithms for the molecular beam epitaxy model with slope selection. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4745-4765. doi: 10.3934/dcdsb.2020311 |
[11] |
Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa. A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition. Communications on Pure and Applied Analysis, 2022, 21 (2) : 355-392. doi: 10.3934/cpaa.2021181 |
[12] |
Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013 |
[13] |
Casimir Emako, Farah Kanbar, Christian Klingenberg, Min Tang. A criterion for asymptotic preserving schemes of kinetic equations to be uniformly stationary preserving. Kinetic and Related Models, 2021, 14 (5) : 847-866. doi: 10.3934/krm.2021026 |
[14] |
Mouhamadou Aliou M. T. Baldé, Diaraf Seck. Coupling the shallow water equation with a long term dynamics of sand dunes. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1521-1551. doi: 10.3934/dcdss.2016061 |
[15] |
Anwar Ja'afar Mohamad Jawad, Mohammad Mirzazadeh, Anjan Biswas. Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1155-1164. doi: 10.3934/dcdss.2015.8.1155 |
[16] |
Yuto Miyatake, Tai Nakagawa, Tomohiro Sogabe, Shao-Liang Zhang. A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation. Journal of Computational Dynamics, 2019, 6 (2) : 361-383. doi: 10.3934/jcd.2019018 |
[17] |
Andrei Cozma, Christoph Reisinger. Exponential integrability properties of Euler discretization schemes for the Cox--Ingersoll--Ross process. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3359-3377. doi: 10.3934/dcdsb.2016101 |
[18] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[19] |
Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593 |
[20] |
Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]