[1]
|
L. Brugnano, M. Calvo, J. Montijano and L. Rández, Energy-preserving methods for Poisson systems, Journal of Computational and Applied Mathematics, 236 (2012), 3890–3904, 40 years of numerical analysis: "Is the discrete world an approximation of the continuous one or is it the other way around".
doi: 10.1016/j.cam.2012.02.033.
|
[2]
|
A. Chern, F. Knöppel, U. Pinkall, P. Schröder and S. Weiẞmann, Schrödinger's smoke, ACM Transactions on Graphics (TOG), 35 (2016), 77.
doi: 10.1145/2897824.2925868.
|
[3]
|
D. Cohen and E. Hairer, Linear energy-preserving integrators for Poisson systems, BIT Numerical Mathematics, 51 (2011), 91-101.
doi: 10.1007/s10543-011-0310-z.
|
[4]
|
M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 305205, 14pp.
doi: 10.1088/1751-8113/44/30/305205.
|
[5]
|
D. M. de Diego, Lie-Poisson integrators, preprint, arXiv: 1803.01427, URL https://arXiv.org/abs/1803.01427.
|
[6]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition. Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-30666-8.
|
[7]
|
B. Khesin and R. Wendt, Infinite-dimensional lie groups: Their geometry, orbits, and dynamical systems, The Geometry of Infinite-Dimensional Groups, 2009, 47–153.
doi: 10.1007/978-3-540-77263-7_2.
|
[8]
|
A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, vol. 53, AMS, 1997.
doi: 10.1090/surv/053.
|
[9]
|
E. Kuznetsov and A. Mikhailov, On the topological meaning of canonical Clebsch variables, Physics Letters A, 77 (1980), 37-38.
doi: 10.1016/0375-9601(80)90627-1.
|
[10]
|
J. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1980), 305-323.
doi: 10.1016/0167-2789(83)90134-3.
|
[11]
|
J. E. Marsden and R. Abraham, Foundations of Mechanics, 2nd edition, Addison-Wesley Publishing Co., Redwood City, CA., 1978, URL http://resolver.caltech.edu/CaltechBOOK:1987.001.
|
[12]
|
J. E. Marsden, S. Pekarsky and S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999), 1647-1662.
doi: 10.1088/0951-7715/12/6/314.
|
[13]
|
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Springer New York, New York, NY, 1999.
doi: 10.1007/978-0-387-21792-5.
|
[14]
|
R. I. McLachlan, Spatial discretization of partial differential equations with integrals, IMA Journal of Numerical Analysis, 23 (2003), 645-664.
doi: 10.1093/imanum/23.4.645.
|
[15]
|
R. I. McLachlan, K. Modin and O. Verdier, Collective symplectic integrators, Nonlinearity, 27 (2014), 1525-1542.
doi: 10.1088/0951-7715/27/6/1525.
|
[16]
|
I. Vaisman, Symplectic realizations of poisson manifolds, Lectures on the Geometry of Poisson Manifolds, 1994,115–133.
doi: 10.1007/978-3-0348-8495-2_9.
|
[17]
|
C. Vizman, Geodesic equations on diffeomorphism groups, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 030, 22 pp.
doi: 10.3842/SIGMA.2008.030.
|