[1]
|
P. Bader, S. Blanes, F. Casas and M. Thalhammer, Efficient time integration methods for Gross-Pitaevskii equations with rotation term, J. Comput. Dyn., 6 (2019), 147-169.
|
[2]
|
M. Benning, E. Celledoni, M. J. Ehrhardt, B. Owren and C.-B. Schönlieb, Deep learning as optimal control problems: Models and numerical methods, J. Comput. Dyn., 6 (2019), 171-198.
|
[3]
|
G. Bogfjellmo, Algebraic structure of aromatic B-series, J. Comput. Dyn., 6 (2019), 199-122.
|
[4]
|
C. J. Budd and A. Iserles, Geometric integration: Numerical solution of differential equations on manifolds, Phil. Trans. Roy. Soc. A Math. Phys. Eng. Sci., 357 (1999), 945-956.
doi: 10.1098/rsta.1999.0360.
|
[5]
|
E. Celledoni, R. I. McLachlan, B. Owren and G. R. W. Quispel, Geometric properties of Kahan's method, J. Phys. A, 46 (2012), 025201, 12 pp.
doi: 10.1088/1751-8113/46/2/025201.
|
[6]
|
H. Christodoulidi, A. N. W. Hone and T. E. Kouloukas, A new class of integrable Lotka-Volterra systems, J. Comput. Dyn., 6 (2019), 223-237.
|
[7]
|
M. Condon, A. Iserles, K. Kropielnicka and P. Singh, Solving the wave equation with multifrequency oscillations, J. Comput. Dyn., 6 (2019), 239-249.
|
[8]
|
C. Curry, S. Marsland and R. I. McLachlan, Principal symmetric space analysis, J. Comput. Dyn., 6 (2019), 251-276.
|
[9]
|
C. A. Evripidou, P. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, J. Comput. Dyn., 6 (2019), 277-306.
|
[10]
|
G. Frasca-Caccia and P. E. Hydon, Locally conservative finite difference schemes for the modified KdV equation, J. Comput. Dyn., 6 (2019), 307-323.
|
[11]
|
F. A. Haggar, G. B. Byrnes, G. R. W. Quispel and H. W. Capel, K-integrals and k-Lie symmetries in discrete dynamical systems, Physica A, 233 (1996), 379-394.
|
[12]
|
A. Iserles, G. R. W. Quispel and P. S. P. Tse, B-series methods cannot be volume-preserving, BIT Numerical Mathematics, 47 (2007), 351-378.
doi: 10.1007/s10543-006-0114-8.
|
[13]
|
N. Joshi and P. Kassotakis, Re-factorising a QRT map, J. Comput. Dyn., 6 (2019), 325-343.
|
[14]
|
J. S. W. Lamb and G. R. W. Quispel, Reversing k-symmetries in dynamical systems, Physica D, 73 (1994), 277-304.
doi: 10.1016/0167-2789(94)90101-5.
|
[15]
|
R. I. McLachlan and A. Murua, The Lie algebra of classical mechanics, J. Comput. Dyn., 6 (2019), 345-360.
|
[16]
|
R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first integrals, Phys. Rev. Lett., 81 (1998), 2399-2403.
doi: 10.1103/PhysRevLett.81.2399.
|
[17]
|
R. I. McLachlan, G. R. W. Quispel and G. S. Turner, Numerical integrators that preserve symmetries and reversing symmetries, SIAM J. Numer. Anal., 35 (1998), 586-599.
doi: 10.1137/S0036142995295807.
|
[18]
|
R. I. McLachlan and G. R. W. Quispel, What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration, Nonlinearity, 14 (2001), 1689-1705.
doi: 10.1088/0951-7715/14/6/315.
|
[19]
|
Y. Miyatake, T. Nakagawa, T. Sogabe and S.-L. Zhang, A structure-preserving fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation, J. Comput. Dyn., 6 (2019), 361-383.
|
[20]
|
S. Pathiraja and S. Reich, Discrete gradients for computational Bayesian inference, J. Comput. Dyn., 6 (2019), 385-400.
|
[21]
|
M. Petrera and Y. B. Suris, Geometry of the Kahan discretizations of planar quadratic hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor, J. Comput. Dyn., 6 (2019), 401-408.
|
[22]
|
G. R. W. Quispel, Linear Integral Equations and Soliton Systems, thesis, University of Leiden, 1983, https://www.lorentz.leidenuniv.nl/IL-publications/dissertations/sources/Quispel_1983.pdf.
|
[23]
|
G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7 pp.
doi: 10.1088/1751-8113/41/4/045206.
|
[24]
|
G. R. W. Quispel, F. W. Nijhoff, H. W. Capel and J. van der Linden, Linear integral equations and nonlinear difference-difference equations, Physica A: Statistical and Theoretical Physics, 125 (1984), 344-380.
doi: 10.1016/0378-4371(84)90059-1.
|
[25]
|
G. R. W. Quispel, J. A. G. Roberts and C. J. Thompson, Integrable mappings and soliton equations. Ⅰ, Phys. Lett. A, 126 (1988), 419-421.
doi: 10.1016/0375-9601(88)90803-1.
|
[26]
|
G. R. W. Quispel, J. A. G. Roberts and C. J. Thompson, Integrable mappings and soliton equations Ⅱ, Physica D, 34 (1989), 183-192.
doi: 10.1016/0167-2789(89)90233-9.
|
[27]
|
G. R. W. Quispel and H. W. Capel, Solving ODEs numerically while preserving a first integral, Phys. Lett. A, 218 (1996), 223-228.
doi: 10.1016/0375-9601(96)00403-3.
|
[28]
|
J. A. G. Roberts and G. R. W. Quispel, Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems, Phys. Rep., 216 (1992), 63-177.
doi: 10.1016/0370-1573(92)90163-T.
|
[29]
|
N. Sætran and A. Zanna, Chains of rigid bodies and their numerical simulation by local frame methods, J. Comput. Dyn., 6 (2019), 409-427.
|
[30]
|
Y. Shi, Y. Sun, Y. Wang and J. Liu, Study of adaptive symplectic methods for simulating charged particle dynamics, J. Comput. Dyn., 6 (2019), 429-448.
|
[31]
|
D. T. Tran and J. A. G. Roberts, Linear degree growth in lattice equations, J. Comput. Dyn., 6 (2019), 449-467.
|
[32]
|
J. M. Tuwankotta and E. Harjanto, Strange attractors in a predator-prey system with non-monotonic response function and periodic perturbation, J. Comput. Dyn., 6 (2019), 469-483.
|
[33]
|
M. Zadra and M. L. Mansfield, Using Lie group integrators to solve two dimensional variational problems with symmetry, J. Comput. Dyn., 6 (2019), 485-511.
|