December  2019, 6(2): ⅰ-ⅴ. doi: 10.3934/jcd.2019007

Preface Special issue in honor of Reinout Quispel

1. 

Department of Mathematical Sciences, NTNU, Norway

2. 

School of Fundamental Sciences, Massey University, Palmerston North, New Zealand

Published  November 2019

Citation: Elena Celledoni, Robert I. McLachlan. Preface Special issue in honor of Reinout Quispel. Journal of Computational Dynamics, 2019, 6 (2) : ⅰ-ⅴ. doi: 10.3934/jcd.2019007
References:
[1]

P. BaderS. BlanesF. Casas and M. Thalhammer, Efficient time integration methods for Gross-Pitaevskii equations with rotation term, J. Comput. Dyn., 6 (2019), 147-169.   Google Scholar

[2]

M. BenningE. CelledoniM. J. EhrhardtB. Owren and C.-B. Schönlieb, Deep learning as optimal control problems: Models and numerical methods, J. Comput. Dyn., 6 (2019), 171-198.   Google Scholar

[3]

G. Bogfjellmo, Algebraic structure of aromatic B-series, J. Comput. Dyn., 6 (2019), 199-122.   Google Scholar

[4]

C. J. Budd and A. Iserles, Geometric integration: Numerical solution of differential equations on manifolds, Phil. Trans. Roy. Soc. A Math. Phys. Eng. Sci., 357 (1999), 945-956.  doi: 10.1098/rsta.1999.0360.  Google Scholar

[5]

E. CelledoniR. I. McLachlanB. Owren and G. R. W. Quispel, Geometric properties of Kahan's method, J. Phys. A, 46 (2012), 025201, 12 pp.  doi: 10.1088/1751-8113/46/2/025201.  Google Scholar

[6]

H. ChristodoulidiA. N. W. Hone and T. E. Kouloukas, A new class of integrable Lotka-Volterra systems, J. Comput. Dyn., 6 (2019), 223-237.   Google Scholar

[7]

M. CondonA. IserlesK. Kropielnicka and P. Singh, Solving the wave equation with multifrequency oscillations, J. Comput. Dyn., 6 (2019), 239-249.   Google Scholar

[8]

C. CurryS. Marsland and R. I. McLachlan, Principal symmetric space analysis, J. Comput. Dyn., 6 (2019), 251-276.   Google Scholar

[9]

C. A. EvripidouP. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, J. Comput. Dyn., 6 (2019), 277-306.   Google Scholar

[10]

G. Frasca-Caccia and P. E. Hydon, Locally conservative finite difference schemes for the modified KdV equation, J. Comput. Dyn., 6 (2019), 307-323.   Google Scholar

[11]

F. A. HaggarG. B. ByrnesG. R. W. Quispel and H. W. Capel, K-integrals and k-Lie symmetries in discrete dynamical systems, Physica A, 233 (1996), 379-394.   Google Scholar

[12]

A. IserlesG. R. W. Quispel and P. S. P. Tse, B-series methods cannot be volume-preserving, BIT Numerical Mathematics, 47 (2007), 351-378.  doi: 10.1007/s10543-006-0114-8.  Google Scholar

[13]

N. Joshi and P. Kassotakis, Re-factorising a QRT map, J. Comput. Dyn., 6 (2019), 325-343.   Google Scholar

[14]

J. S. W. Lamb and G. R. W. Quispel, Reversing k-symmetries in dynamical systems, Physica D, 73 (1994), 277-304.  doi: 10.1016/0167-2789(94)90101-5.  Google Scholar

[15]

R. I. McLachlan and A. Murua, The Lie algebra of classical mechanics, J. Comput. Dyn., 6 (2019), 345-360.   Google Scholar

[16]

R. I. McLachlanG. R. W. Quispel and N. Robidoux, Unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first integrals, Phys. Rev. Lett., 81 (1998), 2399-2403.  doi: 10.1103/PhysRevLett.81.2399.  Google Scholar

[17]

R. I. McLachlanG. R. W. Quispel and G. S. Turner, Numerical integrators that preserve symmetries and reversing symmetries, SIAM J. Numer. Anal., 35 (1998), 586-599.  doi: 10.1137/S0036142995295807.  Google Scholar

[18]

R. I. McLachlan and G. R. W. Quispel, What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration, Nonlinearity, 14 (2001), 1689-1705.  doi: 10.1088/0951-7715/14/6/315.  Google Scholar

[19]

Y. MiyatakeT. NakagawaT. Sogabe and S.-L. Zhang, A structure-preserving fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation, J. Comput. Dyn., 6 (2019), 361-383.   Google Scholar

[20]

S. Pathiraja and S. Reich, Discrete gradients for computational Bayesian inference, J. Comput. Dyn., 6 (2019), 385-400.   Google Scholar

[21]

M. Petrera and Y. B. Suris, Geometry of the Kahan discretizations of planar quadratic hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor, J. Comput. Dyn., 6 (2019), 401-408.   Google Scholar

[22]

G. R. W. Quispel, Linear Integral Equations and Soliton Systems, thesis, University of Leiden, 1983, https://www.lorentz.leidenuniv.nl/IL-publications/dissertations/sources/Quispel_1983.pdf. Google Scholar

[23]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7 pp.  doi: 10.1088/1751-8113/41/4/045206.  Google Scholar

[24]

G. R. W. QuispelF. W. NijhoffH. W. Capel and J. van der Linden, Linear integral equations and nonlinear difference-difference equations, Physica A: Statistical and Theoretical Physics, 125 (1984), 344-380.  doi: 10.1016/0378-4371(84)90059-1.  Google Scholar

[25]

G. R. W. QuispelJ. A. G. Roberts and C. J. Thompson, Integrable mappings and soliton equations. Ⅰ, Phys. Lett. A, 126 (1988), 419-421.  doi: 10.1016/0375-9601(88)90803-1.  Google Scholar

[26]

G. R. W. QuispelJ. A. G. Roberts and C. J. Thompson, Integrable mappings and soliton equations Ⅱ, Physica D, 34 (1989), 183-192.  doi: 10.1016/0167-2789(89)90233-9.  Google Scholar

[27]

G. R. W. Quispel and H. W. Capel, Solving ODEs numerically while preserving a first integral, Phys. Lett. A, 218 (1996), 223-228.  doi: 10.1016/0375-9601(96)00403-3.  Google Scholar

[28]

J. A. G. Roberts and G. R. W. Quispel, Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems, Phys. Rep., 216 (1992), 63-177.  doi: 10.1016/0370-1573(92)90163-T.  Google Scholar

[29]

N. Sætran and A. Zanna, Chains of rigid bodies and their numerical simulation by local frame methods, J. Comput. Dyn., 6 (2019), 409-427.   Google Scholar

[30]

Y. ShiY. SunY. Wang and J. Liu, Study of adaptive symplectic methods for simulating charged particle dynamics, J. Comput. Dyn., 6 (2019), 429-448.   Google Scholar

[31]

D. T. Tran and J. A. G. Roberts, Linear degree growth in lattice equations, J. Comput. Dyn., 6 (2019), 449-467.   Google Scholar

[32]

J. M. Tuwankotta and E. Harjanto, Strange attractors in a predator-prey system with non-monotonic response function and periodic perturbation, J. Comput. Dyn., 6 (2019), 469-483.   Google Scholar

[33]

M. Zadra and M. L. Mansfield, Using Lie group integrators to solve two dimensional variational problems with symmetry, J. Comput. Dyn., 6 (2019), 485-511.   Google Scholar

show all references

References:
[1]

P. BaderS. BlanesF. Casas and M. Thalhammer, Efficient time integration methods for Gross-Pitaevskii equations with rotation term, J. Comput. Dyn., 6 (2019), 147-169.   Google Scholar

[2]

M. BenningE. CelledoniM. J. EhrhardtB. Owren and C.-B. Schönlieb, Deep learning as optimal control problems: Models and numerical methods, J. Comput. Dyn., 6 (2019), 171-198.   Google Scholar

[3]

G. Bogfjellmo, Algebraic structure of aromatic B-series, J. Comput. Dyn., 6 (2019), 199-122.   Google Scholar

[4]

C. J. Budd and A. Iserles, Geometric integration: Numerical solution of differential equations on manifolds, Phil. Trans. Roy. Soc. A Math. Phys. Eng. Sci., 357 (1999), 945-956.  doi: 10.1098/rsta.1999.0360.  Google Scholar

[5]

E. CelledoniR. I. McLachlanB. Owren and G. R. W. Quispel, Geometric properties of Kahan's method, J. Phys. A, 46 (2012), 025201, 12 pp.  doi: 10.1088/1751-8113/46/2/025201.  Google Scholar

[6]

H. ChristodoulidiA. N. W. Hone and T. E. Kouloukas, A new class of integrable Lotka-Volterra systems, J. Comput. Dyn., 6 (2019), 223-237.   Google Scholar

[7]

M. CondonA. IserlesK. Kropielnicka and P. Singh, Solving the wave equation with multifrequency oscillations, J. Comput. Dyn., 6 (2019), 239-249.   Google Scholar

[8]

C. CurryS. Marsland and R. I. McLachlan, Principal symmetric space analysis, J. Comput. Dyn., 6 (2019), 251-276.   Google Scholar

[9]

C. A. EvripidouP. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, J. Comput. Dyn., 6 (2019), 277-306.   Google Scholar

[10]

G. Frasca-Caccia and P. E. Hydon, Locally conservative finite difference schemes for the modified KdV equation, J. Comput. Dyn., 6 (2019), 307-323.   Google Scholar

[11]

F. A. HaggarG. B. ByrnesG. R. W. Quispel and H. W. Capel, K-integrals and k-Lie symmetries in discrete dynamical systems, Physica A, 233 (1996), 379-394.   Google Scholar

[12]

A. IserlesG. R. W. Quispel and P. S. P. Tse, B-series methods cannot be volume-preserving, BIT Numerical Mathematics, 47 (2007), 351-378.  doi: 10.1007/s10543-006-0114-8.  Google Scholar

[13]

N. Joshi and P. Kassotakis, Re-factorising a QRT map, J. Comput. Dyn., 6 (2019), 325-343.   Google Scholar

[14]

J. S. W. Lamb and G. R. W. Quispel, Reversing k-symmetries in dynamical systems, Physica D, 73 (1994), 277-304.  doi: 10.1016/0167-2789(94)90101-5.  Google Scholar

[15]

R. I. McLachlan and A. Murua, The Lie algebra of classical mechanics, J. Comput. Dyn., 6 (2019), 345-360.   Google Scholar

[16]

R. I. McLachlanG. R. W. Quispel and N. Robidoux, Unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first integrals, Phys. Rev. Lett., 81 (1998), 2399-2403.  doi: 10.1103/PhysRevLett.81.2399.  Google Scholar

[17]

R. I. McLachlanG. R. W. Quispel and G. S. Turner, Numerical integrators that preserve symmetries and reversing symmetries, SIAM J. Numer. Anal., 35 (1998), 586-599.  doi: 10.1137/S0036142995295807.  Google Scholar

[18]

R. I. McLachlan and G. R. W. Quispel, What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration, Nonlinearity, 14 (2001), 1689-1705.  doi: 10.1088/0951-7715/14/6/315.  Google Scholar

[19]

Y. MiyatakeT. NakagawaT. Sogabe and S.-L. Zhang, A structure-preserving fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation, J. Comput. Dyn., 6 (2019), 361-383.   Google Scholar

[20]

S. Pathiraja and S. Reich, Discrete gradients for computational Bayesian inference, J. Comput. Dyn., 6 (2019), 385-400.   Google Scholar

[21]

M. Petrera and Y. B. Suris, Geometry of the Kahan discretizations of planar quadratic hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor, J. Comput. Dyn., 6 (2019), 401-408.   Google Scholar

[22]

G. R. W. Quispel, Linear Integral Equations and Soliton Systems, thesis, University of Leiden, 1983, https://www.lorentz.leidenuniv.nl/IL-publications/dissertations/sources/Quispel_1983.pdf. Google Scholar

[23]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7 pp.  doi: 10.1088/1751-8113/41/4/045206.  Google Scholar

[24]

G. R. W. QuispelF. W. NijhoffH. W. Capel and J. van der Linden, Linear integral equations and nonlinear difference-difference equations, Physica A: Statistical and Theoretical Physics, 125 (1984), 344-380.  doi: 10.1016/0378-4371(84)90059-1.  Google Scholar

[25]

G. R. W. QuispelJ. A. G. Roberts and C. J. Thompson, Integrable mappings and soliton equations. Ⅰ, Phys. Lett. A, 126 (1988), 419-421.  doi: 10.1016/0375-9601(88)90803-1.  Google Scholar

[26]

G. R. W. QuispelJ. A. G. Roberts and C. J. Thompson, Integrable mappings and soliton equations Ⅱ, Physica D, 34 (1989), 183-192.  doi: 10.1016/0167-2789(89)90233-9.  Google Scholar

[27]

G. R. W. Quispel and H. W. Capel, Solving ODEs numerically while preserving a first integral, Phys. Lett. A, 218 (1996), 223-228.  doi: 10.1016/0375-9601(96)00403-3.  Google Scholar

[28]

J. A. G. Roberts and G. R. W. Quispel, Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems, Phys. Rep., 216 (1992), 63-177.  doi: 10.1016/0370-1573(92)90163-T.  Google Scholar

[29]

N. Sætran and A. Zanna, Chains of rigid bodies and their numerical simulation by local frame methods, J. Comput. Dyn., 6 (2019), 409-427.   Google Scholar

[30]

Y. ShiY. SunY. Wang and J. Liu, Study of adaptive symplectic methods for simulating charged particle dynamics, J. Comput. Dyn., 6 (2019), 429-448.   Google Scholar

[31]

D. T. Tran and J. A. G. Roberts, Linear degree growth in lattice equations, J. Comput. Dyn., 6 (2019), 449-467.   Google Scholar

[32]

J. M. Tuwankotta and E. Harjanto, Strange attractors in a predator-prey system with non-monotonic response function and periodic perturbation, J. Comput. Dyn., 6 (2019), 469-483.   Google Scholar

[33]

M. Zadra and M. L. Mansfield, Using Lie group integrators to solve two dimensional variational problems with symmetry, J. Comput. Dyn., 6 (2019), 485-511.   Google Scholar

[1]

Josef Hofbauer, Rida Laraki, Jérôme Renault. Preface: Special Issue in Honor of the 60th Birthday of Sylvain Sorin. Journal of Dynamics & Games, 2014, 1 (3) : i-iv. doi: 10.3934/jdg.2014.1.3i

[2]

Simon A. Levin. Preface to Special Issue in Honor of Carlos Castillo-Chavez. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : xxv-xxvii. doi: 10.3934/mbe.2013.10.5xxv

[3]

Robert Stephen Cantrell, Suzanne Lenhart, Yuan Lou, Shigui Ruan. Preface on the special issue of Discrete and Continuous Dynamical Systems- Series B in honor of Chris Cosner on the occasion of his 60th birthday. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : i-ii. doi: 10.3934/dcdsb.2014.19.1i

[4]

Amina Eladdadi, Noura Yousfi, Abdessamad Tridane. Preface: Special issue on cancer modeling, analysis and control. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : i-iii. doi: 10.3934/dcdsb.2013.18.4i

[5]

Angelo Favini, Genni Fragnelli, Luca Lorenzi. Preface to the special issue in memory of Alfredo Lorenzi. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : i-ii. doi: 10.3934/dcdss.201603i

[6]

Andrea L. Bertozzi. Preface to special issue on mathematics of social systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : i-v. doi: 10.3934/dcdsb.2014.19.5i

[7]

Stefan Siegmund, Petr Stehlík. Preface: Special issue on dynamical systems on graphs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : ⅰ-ⅲ. doi: 10.3934/dcdsb.201805i

[8]

Marius Tucsnak. Preface to the special issue on control of infinite dimensional systems. Mathematical Control & Related Fields, 2019, 9 (4) : ⅰ-ⅱ. doi: 10.3934/mcrf.2019042

[9]

María J. Garrido-Atienza, Oleksiy V. Kapustyan, José Valero. Preface to the special issue "Finite and infinite dimensional multivalued dynamical systems". Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : ⅰ-ⅳ. doi: 10.3934/dcdsb.201705i

[10]

Michal Beneš, Tetsuya Ishiwata, Takashi Sakamoto, Shigetoshi Yazaki. Preface: Special Issue on recent topics in industrial and applied mathematics. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : i-i. doi: 10.3934/dcdss.2015.8.5i

[11]

Aniello Buonocore, Antonio Di Crescenzo, Alan Hastings. Preface for the special issue of Mathematical Biosciences and Engineering, BIOCOMP 2012. Mathematical Biosciences & Engineering, 2014, 11 (2) : i-ii. doi: 10.3934/mbe.2014.11.2i

[12]

Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i

[13]

Piotr Oprocha, Alfred Peris. Preface special issue: Advances and applications in qualitative studies of dynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : i-ii. doi: 10.3934/dcds.2015.35.2i

[14]

Jinhae Park. Preface: Special issue on mathematical study on liquid crystals and related topics: Statics and dynamics. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : i-i. doi: 10.3934/dcdss.2015.8.2i

[15]

Georg Hetzer, Wenxian Shen. Preface: Special issue on dissipative systems and applications with emphasis on nonlocal or nonlinear diffusion problems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : i-iii. doi: 10.3934/dcds.2015.35.4i

[16]

Pierluigi Colli, Gianni Gilardi, Dietmar Hömberg, Pavel Krejčí, Elisabetta Rocca. Preface: Special issue dedicated to Jürgen Sprekels on the occasion of his 65th birthday. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : i-ii. doi: 10.3934/dcds.2015.35.6i

[17]

Tomás Caraballo Garrido, Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Zgurovsky. Preface to the special issue "Dynamics and control in distributed systems: Dedicated to the memory of Valery S. Melnik (1952-2007)". Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : ⅰ-ⅴ. doi: 10.3934/dcdsb.20193i

[18]

Zalman Balanov, Wiesław Krawcewicz, Jianshe Yu. Preface: Special issue of DCDS-S dedicated to the 70th birthday of Norman Dancer. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : ⅰ-ⅱ. doi: 10.3934/dcdss.20197i

[19]

Gary Froyland, Oliver Junge, Kathrin Padberg-Gehle. Preface: Special issue on the occasion of the 4th International Workshop on Set-Oriented Numerics (SON 13, Dresden, 2013). Journal of Computational Dynamics, 2015, 2 (1) : i-ii. doi: 10.3934/jcd.2015.2.1i

[20]

Adrian Constantin, Joachim Escher. Introduction to the special issue on hydrodynamic model equations. Communications on Pure & Applied Analysis, 2012, 11 (4) : i-iii. doi: 10.3934/cpaa.2012.11.4i

 Impact Factor: 

Metrics

  • PDF downloads (57)
  • HTML views (50)
  • Cited by (0)

Other articles
by authors

[Back to Top]