The objective of this work is the introduction and investigation of favourable time integration methods for the Gross-Pitaevskii equation with rotation term. Employing a reformulation in rotating Lagrangian coordinates, the equation takes the form of a nonlinear Schrödinger equation involving a space-time-dependent potential. A natural approach that combines commutator-free quasi-Magnus exponential integrators with operator splitting methods and Fourier spectral space discretisations is proposed. Furthermore, the special structure of the Hamilton operator permits the design of specifically tailored schemes. Numerical experiments confirm the good performance of the resulting exponential integrators.
Citation: |
Figure 1. Overview of exponential time integration methods. Commutator-free quasi-Magnus exponential integrators (CFQM, order $ p $, number of compositions $ J $, number of quadrature nodes $ K $) or modified commutator-free quasi-Magnus exponential integrator (Scheme BBK, order $ p = 6 $), respectively, combined with operator splitting methods (order $ p $, number of compositions $ s $)
Figure 2. Time integration of non-autonomous linear test equation in two (left) and three (right) space dimensions by quasi-Magnus exponential integrators and operator splitting methods, see (8), (21), and Figure 1. Global errors versus time stepsizes (first row) or number of fast Fourier transforms and inverse fast Fourier transforms (second row), respectively
Figure 3. Time integration of non-autonomous nonlinear test equation in two (left) and three (right) space dimensions with $ \vartheta = 1 $ by quasi-Magnus exponential integrators and operator splitting methods, see (8), (21), and Figure 1. Global errors versus time stepsizes (first row) or number of fast Fourier transforms and inverse fast Fourier transforms (second row), respectively
Figure 4. Time integration of non-autonomous nonlinear test equation in two (left) and three (right) space dimensions with $ \vartheta = 10 $ by quasi-Magnus exponential integrators and operator splitting methods, see (8), (21), and Figure 1. Global errors versus time stepsizes (first row) or number of fast Fourier transforms and inverse fast Fourier transforms (second row), respectively
Figure 5. Time integration of two-dimensional rotational Gross-Pitaevskii equation (22) by sixth-order modified CFQM exponential integrator (20) and optimised sixth-order splitting method proposed in [18]. Solution profile $ |{\psi(x, t)}|^2 $ displayed for spatial section $ x \in [- 5, 5]^2 $ and time $ t = 15 $. Consistent results obtained by time-splitting generalised-Laguerre-Fourier spectral methods [22,Eq. (7)-(8),Fig. 2]
[1] |
J. R. Abo-Shaeer, C. Raman, J. M. Vogels and W. Ketterle, Observation of vortex lattices in Bose-Einstein condensates, Science, 292 (2001), 476-479.
doi: 10.1126/science.1060182.![]() ![]() |
[2] |
A. Alvermann and H. Fehske, High-order commutator-free exponential time-propagation of driven quantum systems, J. Comput. Phys., 230 (2011), 5930-5956.
doi: 10.1016/j.jcp.2011.04.006.![]() ![]() ![]() |
[3] |
A. Alvermann, H. Fehske and P. B. Littlewood, Numerical time propagation of quantum systems in radiation fields, New. J. Phys., 14 (2012), 22pp.
doi: 10.1088/1367-2630/14/10/105008.![]() ![]() |
[4] |
M. H. Anderson, J. R. Ensher, M. R. Matthewa, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198-201.
doi: 10.1126/science.269.5221.198.![]() ![]() |
[5] |
X. Antoine, C. Besse and W. Bao, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), 2621-2633.
doi: 10.1016/j.cpc.2013.07.012.![]() ![]() ![]() |
[6] |
P. Bader, Geometric integrators for Schrödinger equations, Ph.D thesis, Universitat Politécnica de Valencia, 2014.
doi: 10.4995/Thesis/10251/38716.![]() ![]() |
[7] |
P. Bader, Fourier-splitting methods for the dynamics of rotating Bose-Einstein condensates, J. Comput. Appl. Math., 336 (2018), 267-280.
doi: 10.1016/j.cam.2017.12.038.![]() ![]() ![]() |
[8] |
P. Bader, S. Blanes and N. Kopylov, Exponential propagators for the Schrödinger equation with a time-dependent potential, J. Chem. Phys., 148 (2018).
doi: 10.1063/1.5036838.![]() ![]() |
[9] |
W. Bao, H. Li and J. Shen, A generalized Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates, SIAM J. Sci. Comput., 31 (2009), 3685-3711.
doi: 10.1137/080739811.![]() ![]() ![]() |
[10] |
W. Bao, D. Marahrens, Q. Tang and Y. Zhang, A simple and efficient numerical method for computing the dynamics of rotating Bose-Einstein condensates via rotating Lagrangian coordinates, SIAM J. Sci. Comput., 35 (2013), A2671-A2695.
doi: 10.1137/130911111.![]() ![]() ![]() |
[11] |
C. Besse, G. Dujardin and I. Lacroix-Violet, High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates, SIAM J. Numer. Anal., 55 (2017), 1387-1411.
doi: 10.1137/15M1029047.![]() ![]() ![]() |
[12] |
S. Blanes, Time-average on the numerical integration of nonautonomous differential equations, SIAM J. Numer. Anal., 56 (2018), 2513-2536.
doi: 10.1137/17M1156150.![]() ![]() ![]() |
[13] |
S. Blanes, F. Casas, C. González and M. Thalhammer, Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear Schrödinger equations, IMA J. Numer. Anal., 38 (2018), 743-778.
doi: 10.1093/imanum/drx012.![]() ![]() ![]() |
[14] |
S. Blanes, F. Casas, J. A. Oteo and J. Ros, The Magnus expansion and some of its applications, Phys. Rep., 470 (2009), 151-238.
doi: 10.1016/j.physrep.2008.11.001.![]() ![]() ![]() |
[15] |
S. Blanes, F. Casas and M. Thalhammer, High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations, Comput. Phys. Commun., 220 (2017), 243-262.
doi: 10.1016/j.cpc.2017.07.016.![]() ![]() ![]() |
[16] |
S. Blanes, F. Casas and M. Thalhammer, Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear evolution equations of parabolic type, IMA J. Numer. Anal., 38 (2018), 743-778.
doi: 10.1093/imanum/drx012.![]() ![]() ![]() |
[17] |
S. Blanes, F. Diele, C. Marangi and S. Ragni, Splitting and composition methods for explicit time dependence in separable dynamical systems, J. Comput. Appl. Math., 235 (2010), 646-659.
doi: 10.1016/j.cam.2010.06.018.![]() ![]() ![]() |
[18] |
S. Blanes and P. C. Moan, Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 142 (2002), 313-330.
doi: 10.1016/S0377-0427(01)00492-7.![]() ![]() ![]() |
[19] |
C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction, Phys. Rev. Lett., 75 (1995), 1687-1690.
doi: 10.1103/PhysRevLett.75.1687.![]() ![]() |
[20] |
I. Danaila and B. Protas, Computation of ground states of the Gross-Pitaevskii functional via Riemannian optimization, SIAM J. Sci. Comput., 39 (2017), B1102-B1129.
doi: 10.1137/17M1121974.![]() ![]() ![]() |
[21] |
K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 3969-3973.
doi: 10.1103/PhysRevLett.75.3969.![]() ![]() |
[22] |
H. Hofstätter, O. Koch and M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for Gross-Pitaevskii equations with rotation term, Numer. Math., 127 (2014), 315-364.
doi: 10.1007/s00211-013-0586-9.![]() ![]() ![]() |
[23] |
A. Iserles and S. P. Nørsett, On the solution of linear differential equations in Lie groups, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 983-1019.
doi: 10.1098/rsta.1999.0362.![]() ![]() ![]() |
[24] |
A. Iserles and G. R. W. Quispel, Why Geometric Numerical Integration?, Discrete Mechanics, Geometric Integration and Lie-Butcher Series, 267, Springer, Cham, 2018, 1-28.
doi: 10.1007/978-3-030-01397-4_1.![]() ![]() ![]() |
[25] |
K. W. Madison, F. Chevy, V. Bretin and J. Dalibard, Stationary states of a rotating Bose-Einstein condensates: Routes to vortex nucleation, Phys. Rev. Lett., 86 (2001), 4443-4446.
doi: 10.1103/PhysRevLett.86.4443.![]() ![]() |
[26] |
W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math., 7 (1954), 649-673.
doi: 10.1002/cpa.3160070404.![]() ![]() ![]() |
[27] |
R. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), 341-434.
doi: 10.1017/S0962492902000053.![]() ![]() ![]() |
[28] |
H. Munthe-Kaas and B. Owren, Computations in a free Lie algebra, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 957-981.
doi: 10.1098/rsta.1999.0361.![]() ![]() ![]() |
[29] |
M. Thalhammer, A fourth-order commutator-free exponential integrator for nonautonomous differential equations, SIAM J. Numer. Anal., 44 (2006), 851-864.
doi: 10.1137/05063042.![]() ![]() ![]() |
[30] |
M. Thalhammer, Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations, SIAM J. Numer. Anal., 50 (2012), 3231-3258.
doi: 10.1137/120866373.![]() ![]() ![]() |
[31] |
M. Thalhammer and J. Abhau, A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations, J. Comput. Phys., 231 (2012), 6665-6681.
doi: 10.1016/j.jcp.2012.05.031.![]() ![]() ![]() |
[32] |
R. Zeng and Y. Zhang, Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates, Comput. Phys. Comm., 180 (2009), 854-860.
doi: 10.1016/j.cpc.2008.12.003.![]() ![]() ![]() |
Overview of exponential time integration methods. Commutator-free quasi-Magnus exponential integrators (CFQM, order
Time integration of non-autonomous linear test equation in two (left) and three (right) space dimensions by quasi-Magnus exponential integrators and operator splitting methods, see (8), (21), and Figure 1. Global errors versus time stepsizes (first row) or number of fast Fourier transforms and inverse fast Fourier transforms (second row), respectively
Time integration of non-autonomous nonlinear test equation in two (left) and three (right) space dimensions with
Time integration of non-autonomous nonlinear test equation in two (left) and three (right) space dimensions with
Time integration of two-dimensional rotational Gross-Pitaevskii equation (22) by sixth-order modified CFQM exponential integrator (20) and optimised sixth-order splitting method proposed in [18]. Solution profile