[1]
|
G. Bogfjellmo and A. Schmeding, The Lie group structure of the Butcher group, Found. Comput. Math., 17 (2017), 127-159.
doi: 10.1007/s10208-015-9285-5.
|
[2]
|
C. Brouder, Runge–Kutta methods and renormalization, European Physical J. C-Particles and Fields, 12 (2000), 521-534.
doi: 10.1007/s100529900235.
|
[3]
|
J. C. Butcher, Coefficients for the study of Runge-Kutta integration processes, J. Austral. Math. Soc., 3 (1963), 185-201.
doi: 10.1017/S1446788700027932.
|
[4]
|
J. C. Butcher, An algebraic theory of integration methods, Math. Comp., 26 (1972), 79-106.
doi: 10.1090/S0025-5718-1972-0305608-0.
|
[5]
|
D. Calaque, K. Ebrahimi-Fard and D. Manchon, Two interacting Hopf algebras of trees: A Hopf-algebraic approach to composition and substitution of B-series, Adv. in Appl. Math., 47 (2011), 282-308.
doi: 10.1016/j.aam.2009.08.003.
|
[6]
|
P. Chartier, E. Hairer and G. Vilmart, Algebraic structures of B-series, Found. Comput. Math., 10 (2010), 407-427.
doi: 10.1007/s10208-010-9065-1.
|
[7]
|
P. Chartier and A. Murua, Preserving first integrals and volume forms of additively split systems, IMA J. Numer. Anal., 27 (2007), 381-405.
doi: 10.1093/imanum/drl039.
|
[8]
|
A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., 199 (1998), 203-242.
doi: 10.1007/s002200050499.
|
[9]
|
K. Feng and Z. J. Shang, Volume-preserving algorithms for source-free dynamical systems, Numer. Math., 71 (1995), 451-463.
doi: 10.1007/s002110050153.
|
[10]
|
J. B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967.
|
[11]
|
E. Hairer and G. Wanner, On the Butcher group and general multi-value methods, Computing (Arch. Elektron. Rechnen), 13 (1974), 1-15.
doi: 10.1007/BF02268387.
|
[12]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-30666-8.
|
[13]
|
A. Iserles, G. R. W. Quispel and P. S. P. Tse, B-series methods cannot be volume-preserving, BIT, 47 (2007), 351-378.
doi: 10.1007/s10543-006-0114-8.
|
[14]
|
D. Manchon, Algebraic background for numerical methods, control theory and renormalization, preprint, arXiv: math/1501.07205.
|
[15]
|
R. I. McLachlan, K. Modin, H. Munthe-Kaas and O. Verdier, Butcher series: A story of rooted trees and numerical methods for evolution equations, Asia Pac. Math. Newsl., 7 (2017), 1-11.
|
[16]
|
R. I. McLachlan, K. Modin, H. Munthe-Kaas and O. Verdier, B-series methods are exactly the affine equivariant methods, Numer. Math., 133 (2016), 599-622.
doi: 10.1007/s00211-015-0753-2.
|
[17]
|
H. Munthe-Kaas and O. Verdier, Aromatic Butcher series, Found. Comput. Math., 16 (2016), 183-215.
doi: 10.1007/s10208-015-9245-0.
|
[18]
|
A. Murua, Formal series and numerical integrators, part Ⅰ: Systems of ODEs and symplectic integrators, Appl. Numer. Math., 29 (1999), 221-251.
doi: 10.1016/S0168-9274(98)00064-6.
|
[19]
|
G. M. Poore, Reproducible documents with pythontex, in Proceedings of the 12th Python in Science Conference, 2013, 78–84.
|
[20]
|
G. R. W. Quispel, Volume-preserving integrators, Phys. Lett. A, 206 (1995), 26-30.
doi: 10.1016/0375-9601(95)00586-R.
|
[21]
|
J. M. Sanz-Serna and A. Murua, Formal series and numerical integrators: Some history and
some new techniques, in Proceedings of the 8th International Congress on Industrial and
Applied Mathematics, Higher Ed. Press, Beijing, 2015, 311-331.
|
[22]
|
M. E. Sweedler, Hopf Algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969.
|