
-
Previous Article
Solving the wave equation with multifrequency oscillations
- JCD Home
- This Issue
-
Next Article
Algebraic structure of aromatic B-series
A new class of integrable Lotka–Volterra systems
1. | Research Center for Astronomy and Applied Mathematics, Academy of Athens, Athens 11527, Greece |
2. | School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7FS, UK |
3. | School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia |
A parameter-dependent class of Hamiltonian (generalized) Lotka–Volterra systems is considered. We prove that this class contains Liouville integrable as well as superintegrable cases according to particular choices of the parameters. We determine sufficient conditions which result in integrable behavior, while we numerically explore the complementary cases, where these analytically derived conditions are not satisfied.
References:
[1] |
Á. Ballesteros, A. Blasco and F. Musso,
Integrable deformations of Lotka-Volterra systems, Phys. Lett. A, 375 (2011), 3370-3374.
doi: 10.1016/j.physleta.2011.07.055. |
[2] |
O. I. Bogoyavlenskij,
Some constructions of integrable dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 737-766.
doi: 10.1070/IM1988v031n01ABEH001043. |
[3] |
O. I. Bogoyavlenskij,
Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.
doi: 10.1134/S1560354708060051. |
[4] |
T. Bountis and P. Vanhaecke,
Lotka-Volterra systems satisfying a strong Painlevé property, Phys. Lett. A., 380 (2016), 3977-3982.
doi: 10.1016/j.physleta.2016.09.034. |
[5] |
S. A. Charalambides, P. A. Damianou and C. A. Evripidou,
On generalized Volterra systems, J. Geom. Phys., 87 (2015), 86-105.
doi: 10.1016/j.geomphys.2014.07.007. |
[6] |
P. A. Damianou, C. A. Evripidou, P. Kassotakis and P. Vanhaecke,
Integrable reductions of the Bogoyavlenskij-Itoh Lotka-Volterra systems, J. Math. Phys., 58 (2017), 17pp.
doi: 10.1063/1.4978854. |
[7] |
C. A. Evripidou, P. Kassotakis and P. Vanhaecke,
Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems, Regul. Chaotic Dyn., 22 (2017), 721-739.
doi: 10.1134/S1560354717060090. |
[8] |
C. A. Evripidou, P. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, preprint, arXiv: math/1903.02876. |
[9] |
M. Hénon and C. Heiles,
The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79.
doi: 10.1086/109234. |
[10] |
B. Hernández-Bermejo and V. Fairén,
Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems, J. Math. Phys., 39 (1998), 6162-6174.
doi: 10.1063/1.532621. |
[11] |
Y. Itoh,
Integrals of a Lotka-Volterra system of odd number of variables, Progr. Theoret. Phys., 78 (1987), 507-510.
doi: 10.1143/PTP.78.507. |
[12] |
Y. Itoh,
A combinatorial method for the vanishing of the Poisson brackets of an integrable Lotka-Volterra system, J. Phys. A, 42 (2009), 11pp.
doi: 10.1088/1751-8113/42/2/025201. |
[13] |
P. H. van der Kamp, T. E. Kouloukas, G. R. W. Quispel, D. T. Tran and P. Vanhaecke,
Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 23pp.
doi: 10.1098/rspa.2014.0481. |
[14] |
T. E. Kouloukas, G. R. W. Quispel and P. Vanhaecke,
Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13pp.
doi: 10.1088/1751-8113/49/22/225201. |
[15] |
A. J. Lotka, Analytical Theory of Biological Populations, The Plenum Series on Demographic Methods and Population Analysis, Plenum Press, New York, 1998.
doi: 10.1007/978-1-4757-9176-1. |
[16] |
O. Ragnisco and M. Scalia, The Volterra Integrable case, preprint, arXiv: math/1903.03595. |
[17] |
Y. B. Suris and O. Ragnisco,
What is the relativistic Volterra lattice?, Comm. Math. Phys., 200 (1999), 445-485.
doi: 10.1007/s002200050537. |
[18] |
J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel and J. C. Sprott,
Chaos in low-dimensional Lotka-Volterra models of competition, Nonlinearity, 19 (2006), 2391-2404.
doi: 10.1088/0951-7715/19/10/006. |
[19] |
A. P. Veselov and A. V. Penskoï,
On algebro-geometric Poisson brackets for the Volterra lattice, Regul. Chaotic Dyn., 3 (1998), 3-9.
doi: 10.1070/rd1998v003n02ABEH000066. |
[20] |
V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1990. |
show all references
References:
[1] |
Á. Ballesteros, A. Blasco and F. Musso,
Integrable deformations of Lotka-Volterra systems, Phys. Lett. A, 375 (2011), 3370-3374.
doi: 10.1016/j.physleta.2011.07.055. |
[2] |
O. I. Bogoyavlenskij,
Some constructions of integrable dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 737-766.
doi: 10.1070/IM1988v031n01ABEH001043. |
[3] |
O. I. Bogoyavlenskij,
Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.
doi: 10.1134/S1560354708060051. |
[4] |
T. Bountis and P. Vanhaecke,
Lotka-Volterra systems satisfying a strong Painlevé property, Phys. Lett. A., 380 (2016), 3977-3982.
doi: 10.1016/j.physleta.2016.09.034. |
[5] |
S. A. Charalambides, P. A. Damianou and C. A. Evripidou,
On generalized Volterra systems, J. Geom. Phys., 87 (2015), 86-105.
doi: 10.1016/j.geomphys.2014.07.007. |
[6] |
P. A. Damianou, C. A. Evripidou, P. Kassotakis and P. Vanhaecke,
Integrable reductions of the Bogoyavlenskij-Itoh Lotka-Volterra systems, J. Math. Phys., 58 (2017), 17pp.
doi: 10.1063/1.4978854. |
[7] |
C. A. Evripidou, P. Kassotakis and P. Vanhaecke,
Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems, Regul. Chaotic Dyn., 22 (2017), 721-739.
doi: 10.1134/S1560354717060090. |
[8] |
C. A. Evripidou, P. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, preprint, arXiv: math/1903.02876. |
[9] |
M. Hénon and C. Heiles,
The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79.
doi: 10.1086/109234. |
[10] |
B. Hernández-Bermejo and V. Fairén,
Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems, J. Math. Phys., 39 (1998), 6162-6174.
doi: 10.1063/1.532621. |
[11] |
Y. Itoh,
Integrals of a Lotka-Volterra system of odd number of variables, Progr. Theoret. Phys., 78 (1987), 507-510.
doi: 10.1143/PTP.78.507. |
[12] |
Y. Itoh,
A combinatorial method for the vanishing of the Poisson brackets of an integrable Lotka-Volterra system, J. Phys. A, 42 (2009), 11pp.
doi: 10.1088/1751-8113/42/2/025201. |
[13] |
P. H. van der Kamp, T. E. Kouloukas, G. R. W. Quispel, D. T. Tran and P. Vanhaecke,
Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 23pp.
doi: 10.1098/rspa.2014.0481. |
[14] |
T. E. Kouloukas, G. R. W. Quispel and P. Vanhaecke,
Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13pp.
doi: 10.1088/1751-8113/49/22/225201. |
[15] |
A. J. Lotka, Analytical Theory of Biological Populations, The Plenum Series on Demographic Methods and Population Analysis, Plenum Press, New York, 1998.
doi: 10.1007/978-1-4757-9176-1. |
[16] |
O. Ragnisco and M. Scalia, The Volterra Integrable case, preprint, arXiv: math/1903.03595. |
[17] |
Y. B. Suris and O. Ragnisco,
What is the relativistic Volterra lattice?, Comm. Math. Phys., 200 (1999), 445-485.
doi: 10.1007/s002200050537. |
[18] |
J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel and J. C. Sprott,
Chaos in low-dimensional Lotka-Volterra models of competition, Nonlinearity, 19 (2006), 2391-2404.
doi: 10.1088/0951-7715/19/10/006. |
[19] |
A. P. Veselov and A. V. Penskoï,
On algebro-geometric Poisson brackets for the Volterra lattice, Regul. Chaotic Dyn., 3 (1998), 3-9.
doi: 10.1070/rd1998v003n02ABEH000066. |
[20] |
V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1990. |







[1] |
S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173 |
[2] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[3] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435 |
[4] |
Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195 |
[5] |
Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953 |
[6] |
Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807 |
[7] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[8] |
Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559 |
[9] |
Fuke Wu, Yangzi Hu. Stochastic Lotka-Volterra system with unbounded distributed delay. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 275-288. doi: 10.3934/dcdsb.2010.14.275 |
[10] |
Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083 |
[11] |
Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239 |
[12] |
Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171 |
[13] |
Zengji Du, Shuling Yan, Kaige Zhuang. Traveling wave fronts in a diffusive and competitive Lotka-Volterra system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3097-3111. doi: 10.3934/dcdss.2021010 |
[14] |
Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012 |
[15] |
Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137 |
[16] |
Bang-Sheng Han, Zhi-Cheng Wang, Zengji Du. Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1959-1983. doi: 10.3934/dcdsb.2020011 |
[17] |
Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477 |
[18] |
Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043 |
[19] |
Guo Lin, Wan-Tong Li, Shigui Ruan. Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 1-23. doi: 10.3934/dcds.2011.31.1 |
[20] |
Dejun Fan, Xiaoyu Yi, Ling Xia, Jingliang Lv. Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2901-2922. doi: 10.3934/dcdsb.2018291 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]