December  2019, 6(2): 239-249. doi: 10.3934/jcd.2019012

Solving the wave equation with multifrequency oscillations

1. 

School of Electronic Engineering, Dublin City University, DCU Glasnevin Campus, Dublin 9, Ireland

2. 

DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom

3. 

Institute of Mathematics, University of Gdańsk, ul. Wit Stwosz 57, 80-308, Gdańsk, Poland

4. 

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom

Received  March 2019 Revised  October 2019 Published  November 2019

We explore a new asymptotic-numerical solver for the time-dependent wave equation with an interaction term that is oscillating in time with a very high frequency. The method involves representing the solution as an asymptotic series in inverse powers of the oscillation frequency. Using the new scheme, high accuracy is achieved at a low computational cost. Salient features of the new approach are highlighted by a numerical example.

Citation: Marissa Condon, Arieh Iserles, Karolina Kropielnicka, Pranav Singh. Solving the wave equation with multifrequency oscillations. Journal of Computational Dynamics, 2019, 6 (2) : 239-249. doi: 10.3934/jcd.2019012
References:
[1]

S. Altinbasak ÜsküpluM. CondonA. Deaño and A. Iserles, Highly oscillatory diffusion-type equations, J. Comput. Math., 31 (2013), 549-572.  doi: 10.4208/jcm.1307-m3955.  Google Scholar

[2]

P. BaderS. BlanesF. CasasN. Kopylov and E. Ponsoda, Symplectic integrators for second-order linear non-autonomous equations, J. Comput. Appl. Math., 330 (2018), 909-919.  doi: 10.1016/j.cam.2017.03.028.  Google Scholar

[3]

S. Blanes and F. Casas, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl. SeMA, 45 (2008), 89-145.   Google Scholar

[4]

D. Cohen and J. Schweitzer, High order numerical methods for highly oscillatory problems, ESAIM Math. Model. Numer. Anal., 49 (2015), 695-711.  doi: 10.1051/m2an/2014056.  Google Scholar

[5]

M. CondonA. Deaño and A. Iserles, On systems of differential equations with extrinsic oscillation, Discrete Contin. Dyn. Syst., 28 (2010), 1345-1367.  doi: 10.3934/dcds.2010.28.1345.  Google Scholar

[6]

J. CooperG. P. Menzala and W. Strauss, On the scattering frequencies of time-dependent potentials, Math. Methods Appl. Sci., 8 (1986), 576-584.  doi: 10.1002/mma.1670080137.  Google Scholar

[7]

S. Cuccagna, On the wave equation with a potential, Commun. Partial Differential Equations, 25 (2000), 1549-1565.  doi: 10.1080/03605300008821559.  Google Scholar

[8]

E. Faou and K. Schratz, Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime, Numer. Math., 126 (2014), 441-469.  doi: 10.1007/s00211-013-0567-z.  Google Scholar

[9]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-30666-8.  Google Scholar

[10]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods, in Acta Numerica, Acta Numer., 9, Cambridge Univ. Press, Cambridge, 2000, 215–365. doi: 10.1017/S0962492900002154.  Google Scholar

[11]

G. Majda and M. Wei, Relationships between a potential and its scattering frequencies, SIAM J. Appl. Math., 55 (1995), 1094-1116.  doi: 10.1137/S0036139992231186.  Google Scholar

[12]

G. F. Roach, Wave scattering by time dependent perturbations, Fract. Calc. Appl. Anal., 4 (2001), 209-236.   Google Scholar

[13]

J. M. Sanz-Serna, Modulated Fourier expansions and heterogeneous multiscale methods, IMA J. Numer. Anal., 29 (2009), 595-605.  doi: 10.1093/imanum/drn031.  Google Scholar

[14]

J. M. Sanz-Serna and A. Portillo, Classical numerical integrators for wave-packet dynamics, J. Chem. Phys., 104 (1996), 2349-2355.  doi: 10.1063/1.470930.  Google Scholar

[15]

G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (1968), 506-517.  doi: 10.1137/0705041.  Google Scholar

show all references

References:
[1]

S. Altinbasak ÜsküpluM. CondonA. Deaño and A. Iserles, Highly oscillatory diffusion-type equations, J. Comput. Math., 31 (2013), 549-572.  doi: 10.4208/jcm.1307-m3955.  Google Scholar

[2]

P. BaderS. BlanesF. CasasN. Kopylov and E. Ponsoda, Symplectic integrators for second-order linear non-autonomous equations, J. Comput. Appl. Math., 330 (2018), 909-919.  doi: 10.1016/j.cam.2017.03.028.  Google Scholar

[3]

S. Blanes and F. Casas, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl. SeMA, 45 (2008), 89-145.   Google Scholar

[4]

D. Cohen and J. Schweitzer, High order numerical methods for highly oscillatory problems, ESAIM Math. Model. Numer. Anal., 49 (2015), 695-711.  doi: 10.1051/m2an/2014056.  Google Scholar

[5]

M. CondonA. Deaño and A. Iserles, On systems of differential equations with extrinsic oscillation, Discrete Contin. Dyn. Syst., 28 (2010), 1345-1367.  doi: 10.3934/dcds.2010.28.1345.  Google Scholar

[6]

J. CooperG. P. Menzala and W. Strauss, On the scattering frequencies of time-dependent potentials, Math. Methods Appl. Sci., 8 (1986), 576-584.  doi: 10.1002/mma.1670080137.  Google Scholar

[7]

S. Cuccagna, On the wave equation with a potential, Commun. Partial Differential Equations, 25 (2000), 1549-1565.  doi: 10.1080/03605300008821559.  Google Scholar

[8]

E. Faou and K. Schratz, Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime, Numer. Math., 126 (2014), 441-469.  doi: 10.1007/s00211-013-0567-z.  Google Scholar

[9]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-30666-8.  Google Scholar

[10]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods, in Acta Numerica, Acta Numer., 9, Cambridge Univ. Press, Cambridge, 2000, 215–365. doi: 10.1017/S0962492900002154.  Google Scholar

[11]

G. Majda and M. Wei, Relationships between a potential and its scattering frequencies, SIAM J. Appl. Math., 55 (1995), 1094-1116.  doi: 10.1137/S0036139992231186.  Google Scholar

[12]

G. F. Roach, Wave scattering by time dependent perturbations, Fract. Calc. Appl. Anal., 4 (2001), 209-236.   Google Scholar

[13]

J. M. Sanz-Serna, Modulated Fourier expansions and heterogeneous multiscale methods, IMA J. Numer. Anal., 29 (2009), 595-605.  doi: 10.1093/imanum/drn031.  Google Scholar

[14]

J. M. Sanz-Serna and A. Portillo, Classical numerical integrators for wave-packet dynamics, J. Chem. Phys., 104 (1996), 2349-2355.  doi: 10.1063/1.470930.  Google Scholar

[15]

G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (1968), 506-517.  doi: 10.1137/0705041.  Google Scholar

Table 1.  [Example 1] Error and cost for the proposed asymptotic method $ \mathcal{A} $ compared to the Lanczos solver $ \mathcal{S} $. Note that each step of $ \mathcal{A} $ uses $ \mathcal{S} $ twice. $ N $ is the number of time steps ($ h = T/N $, $ T = 10 $)
$ N $ 1 2 4 8 16 64 256 1024
$ h $ 10 5 2.5 1.25 0.625 0.156 0.039 0.010
Calls $ \mathcal{S} $ 1 2 4 8 16 64 256 1024
to $ \mathcal{S} $ $ \mathcal{A} $ 2 4 8 16 32 128 512 2048
Error $ \mathcal{S} $ 4147 1.1e5 152.3 44.3 79.4 0.163 0.030 0.007
$ \omega = 25 $ $ \mathcal{A} $ 0.593 0.254 0.251 0.206 0.252 0.249 0.248 0.248
Error $ \mathcal{S} $ 4147 6.8e4 9794 960.2 41.8 0.176 0.037 0.009
$ \omega = 50 $ $ \mathcal{A} $ 0.140 0.062 0.081 0.047 0.033 0.032 0.032 0.032
Error $ \mathcal{S} $ 4147 1.6e5 7914 67.95 80.2 2.081 0.039 0.009
$ \omega = 100 $ $ \mathcal{A} $ 0.077 0.015 0.021 0.011 0.001 0.001 0.001 0.001
$ N $ 1 2 4 8 16 64 256 1024
$ h $ 10 5 2.5 1.25 0.625 0.156 0.039 0.010
Calls $ \mathcal{S} $ 1 2 4 8 16 64 256 1024
to $ \mathcal{S} $ $ \mathcal{A} $ 2 4 8 16 32 128 512 2048
Error $ \mathcal{S} $ 4147 1.1e5 152.3 44.3 79.4 0.163 0.030 0.007
$ \omega = 25 $ $ \mathcal{A} $ 0.593 0.254 0.251 0.206 0.252 0.249 0.248 0.248
Error $ \mathcal{S} $ 4147 6.8e4 9794 960.2 41.8 0.176 0.037 0.009
$ \omega = 50 $ $ \mathcal{A} $ 0.140 0.062 0.081 0.047 0.033 0.032 0.032 0.032
Error $ \mathcal{S} $ 4147 1.6e5 7914 67.95 80.2 2.081 0.039 0.009
$ \omega = 100 $ $ \mathcal{A} $ 0.077 0.015 0.021 0.011 0.001 0.001 0.001 0.001
Table 2.  [Example 2] Error and cost for the proposed asymptotic method $ \mathcal{A} $ compared to the Lanczos solver $ \mathcal{S} $. Note that each step of $ \mathcal{A} $ uses $ \mathcal{S} $ twice. $ N $ is the number of time steps ($ h = T/N $, $ T = 5 $)
$ N $ 1 2 4 8 16 32 64 128 256
$ h $ 5 2.5 1.25 0.625 0.313 0.156 0.078 0.039 0.02
Calls $ \mathcal{S} $ 1 2 4 8 16 32 64 128 256
to $ \mathcal{S} $ $ \mathcal{A} $ 2 4 8 16 32 64 128 256 512
Error $ \mathcal{S} $ 4.237 88.3 96.3 98.1 1.18 0.447 0.189 0.092 0.047
$ \omega = 25 $ $ \mathcal{A} $ 2.14 1.82 1.022 0.409 0.391 0.389 0.388 0.388 0.388
Error $ \mathcal{S} $ 2.55 88.7 82.9 8.845 13.1 0.262 0.128 0.058 0.027
$ \omega = 50 $ $ \mathcal{A} $ 0.452 0.380 0.198 0.045 0.038 0.039 0.039 0.039 0.039
Error $ \mathcal{S} $ 2.39 32.5 20.1 18.1 2.5 2.9 0.106 0.045 0.020
$ \omega = 100 $ $ \mathcal{A} $ 0.117 0.100 0.053 0.008 0.004 0.003 0.003 0.003 0.003
$ N $ 1 2 4 8 16 32 64 128 256
$ h $ 5 2.5 1.25 0.625 0.313 0.156 0.078 0.039 0.02
Calls $ \mathcal{S} $ 1 2 4 8 16 32 64 128 256
to $ \mathcal{S} $ $ \mathcal{A} $ 2 4 8 16 32 64 128 256 512
Error $ \mathcal{S} $ 4.237 88.3 96.3 98.1 1.18 0.447 0.189 0.092 0.047
$ \omega = 25 $ $ \mathcal{A} $ 2.14 1.82 1.022 0.409 0.391 0.389 0.388 0.388 0.388
Error $ \mathcal{S} $ 2.55 88.7 82.9 8.845 13.1 0.262 0.128 0.058 0.027
$ \omega = 50 $ $ \mathcal{A} $ 0.452 0.380 0.198 0.045 0.038 0.039 0.039 0.039 0.039
Error $ \mathcal{S} $ 2.39 32.5 20.1 18.1 2.5 2.9 0.106 0.045 0.020
$ \omega = 100 $ $ \mathcal{A} $ 0.117 0.100 0.053 0.008 0.004 0.003 0.003 0.003 0.003
[1]

Marissa Condon, Jing Gao, Arieh Iserles. On asymptotic expansion solvers for highly oscillatory semi-explicit DAEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4813-4837. doi: 10.3934/dcds.2016008

[2]

Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169

[3]

Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations & Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023

[4]

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080

[5]

Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053

[6]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[7]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[8]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[9]

Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062

[10]

Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 543-576. doi: 10.3934/dcds.2008.20.543

[11]

Chunqing Lu. Asymptotic solutions of a nonlinear equation. Conference Publications, 2003, 2003 (Special) : 590-595. doi: 10.3934/proc.2003.2003.590

[12]

Anna Geyer, Ronald Quirchmayr. Traveling wave solutions of a highly nonlinear shallow water equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1567-1604. doi: 10.3934/dcds.2018065

[13]

Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347

[14]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[15]

Yahong Peng, Yaguang Wang. Reflection of highly oscillatory waves with continuous oscillatory spectra for semilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1293-1306. doi: 10.3934/dcds.2009.24.1293

[16]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[17]

Florian Monteghetti, Ghislain Haine, Denis Matignon. Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions. Mathematical Control & Related Fields, 2019, 9 (4) : 759-791. doi: 10.3934/mcrf.2019049

[18]

Jorge Ferreira, Mauro De Lima Santos. Asymptotic behaviour for wave equations with memory in a noncylindrical domains. Communications on Pure & Applied Analysis, 2003, 2 (4) : 511-520. doi: 10.3934/cpaa.2003.2.511

[19]

Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control & Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010

[20]

Jeffrey R. Haack, Cory D. Hauck. Oscillatory behavior of Asymptotic-Preserving splitting methods for a linear model of diffusive relaxation. Kinetic & Related Models, 2008, 1 (4) : 573-590. doi: 10.3934/krm.2008.1.573

 Impact Factor: 

Metrics

  • PDF downloads (25)
  • HTML views (23)
  • Cited by (0)

[Back to Top]