\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Solving the wave equation with multifrequency oscillations

Abstract / Introduction Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • We explore a new asymptotic-numerical solver for the time-dependent wave equation with an interaction term that is oscillating in time with a very high frequency. The method involves representing the solution as an asymptotic series in inverse powers of the oscillation frequency. Using the new scheme, high accuracy is achieved at a low computational cost. Salient features of the new approach are highlighted by a numerical example.

    Mathematics Subject Classification: Primary: 65M70; Secondary: 41A60, 35L05, 65L05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  [Example 1] Error and cost for the proposed asymptotic method $ \mathcal{A} $ compared to the Lanczos solver $ \mathcal{S} $. Note that each step of $ \mathcal{A} $ uses $ \mathcal{S} $ twice. $ N $ is the number of time steps ($ h = T/N $, $ T = 10 $)

    $ N $ 1 2 4 8 16 64 256 1024
    $ h $ 10 5 2.5 1.25 0.625 0.156 0.039 0.010
    Calls $ \mathcal{S} $ 1 2 4 8 16 64 256 1024
    to $ \mathcal{S} $ $ \mathcal{A} $ 2 4 8 16 32 128 512 2048
    Error $ \mathcal{S} $ 4147 1.1e5 152.3 44.3 79.4 0.163 0.030 0.007
    $ \omega = 25 $ $ \mathcal{A} $ 0.593 0.254 0.251 0.206 0.252 0.249 0.248 0.248
    Error $ \mathcal{S} $ 4147 6.8e4 9794 960.2 41.8 0.176 0.037 0.009
    $ \omega = 50 $ $ \mathcal{A} $ 0.140 0.062 0.081 0.047 0.033 0.032 0.032 0.032
    Error $ \mathcal{S} $ 4147 1.6e5 7914 67.95 80.2 2.081 0.039 0.009
    $ \omega = 100 $ $ \mathcal{A} $ 0.077 0.015 0.021 0.011 0.001 0.001 0.001 0.001
     | Show Table
    DownLoad: CSV

    Table 2.  [Example 2] Error and cost for the proposed asymptotic method $ \mathcal{A} $ compared to the Lanczos solver $ \mathcal{S} $. Note that each step of $ \mathcal{A} $ uses $ \mathcal{S} $ twice. $ N $ is the number of time steps ($ h = T/N $, $ T = 5 $)

    $ N $ 1 2 4 8 16 32 64 128 256
    $ h $ 5 2.5 1.25 0.625 0.313 0.156 0.078 0.039 0.02
    Calls $ \mathcal{S} $ 1 2 4 8 16 32 64 128 256
    to $ \mathcal{S} $ $ \mathcal{A} $ 2 4 8 16 32 64 128 256 512
    Error $ \mathcal{S} $ 4.237 88.3 96.3 98.1 1.18 0.447 0.189 0.092 0.047
    $ \omega = 25 $ $ \mathcal{A} $ 2.14 1.82 1.022 0.409 0.391 0.389 0.388 0.388 0.388
    Error $ \mathcal{S} $ 2.55 88.7 82.9 8.845 13.1 0.262 0.128 0.058 0.027
    $ \omega = 50 $ $ \mathcal{A} $ 0.452 0.380 0.198 0.045 0.038 0.039 0.039 0.039 0.039
    Error $ \mathcal{S} $ 2.39 32.5 20.1 18.1 2.5 2.9 0.106 0.045 0.020
    $ \omega = 100 $ $ \mathcal{A} $ 0.117 0.100 0.053 0.008 0.004 0.003 0.003 0.003 0.003
     | Show Table
    DownLoad: CSV
  • [1] S. Altinbasak ÜsküpluM. CondonA. Deaño and A. Iserles, Highly oscillatory diffusion-type equations, J. Comput. Math., 31 (2013), 549-572.  doi: 10.4208/jcm.1307-m3955.
    [2] P. BaderS. BlanesF. CasasN. Kopylov and E. Ponsoda, Symplectic integrators for second-order linear non-autonomous equations, J. Comput. Appl. Math., 330 (2018), 909-919.  doi: 10.1016/j.cam.2017.03.028.
    [3] S. Blanes and F. Casas, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl. SeMA, 45 (2008), 89-145. 
    [4] D. Cohen and J. Schweitzer, High order numerical methods for highly oscillatory problems, ESAIM Math. Model. Numer. Anal., 49 (2015), 695-711.  doi: 10.1051/m2an/2014056.
    [5] M. CondonA. Deaño and A. Iserles, On systems of differential equations with extrinsic oscillation, Discrete Contin. Dyn. Syst., 28 (2010), 1345-1367.  doi: 10.3934/dcds.2010.28.1345.
    [6] J. CooperG. P. Menzala and W. Strauss, On the scattering frequencies of time-dependent potentials, Math. Methods Appl. Sci., 8 (1986), 576-584.  doi: 10.1002/mma.1670080137.
    [7] S. Cuccagna, On the wave equation with a potential, Commun. Partial Differential Equations, 25 (2000), 1549-1565.  doi: 10.1080/03605300008821559.
    [8] E. Faou and K. Schratz, Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime, Numer. Math., 126 (2014), 441-469.  doi: 10.1007/s00211-013-0567-z.
    [9] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-30666-8.
    [10] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods, in Acta Numerica, Acta Numer., 9, Cambridge Univ. Press, Cambridge, 2000, 215–365. doi: 10.1017/S0962492900002154.
    [11] G. Majda and M. Wei, Relationships between a potential and its scattering frequencies, SIAM J. Appl. Math., 55 (1995), 1094-1116.  doi: 10.1137/S0036139992231186.
    [12] G. F. Roach, Wave scattering by time dependent perturbations, Fract. Calc. Appl. Anal., 4 (2001), 209-236. 
    [13] J. M. Sanz-Serna, Modulated Fourier expansions and heterogeneous multiscale methods, IMA J. Numer. Anal., 29 (2009), 595-605.  doi: 10.1093/imanum/drn031.
    [14] J. M. Sanz-Serna and A. Portillo, Classical numerical integrators for wave-packet dynamics, J. Chem. Phys., 104 (1996), 2349-2355.  doi: 10.1063/1.470930.
    [15] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (1968), 506-517.  doi: 10.1137/0705041.
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(2372) PDF downloads(418) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return