# American Institute of Mathematical Sciences

December  2019, 6(2): 239-249. doi: 10.3934/jcd.2019012

## Solving the wave equation with multifrequency oscillations

 1 School of Electronic Engineering, Dublin City University, DCU Glasnevin Campus, Dublin 9, Ireland 2 DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom 3 Institute of Mathematics, University of Gdańsk, ul. Wit Stwosz 57, 80-308, Gdańsk, Poland 4 Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom

Received  March 2019 Revised  October 2019 Published  November 2019

We explore a new asymptotic-numerical solver for the time-dependent wave equation with an interaction term that is oscillating in time with a very high frequency. The method involves representing the solution as an asymptotic series in inverse powers of the oscillation frequency. Using the new scheme, high accuracy is achieved at a low computational cost. Salient features of the new approach are highlighted by a numerical example.

Citation: Marissa Condon, Arieh Iserles, Karolina Kropielnicka, Pranav Singh. Solving the wave equation with multifrequency oscillations. Journal of Computational Dynamics, 2019, 6 (2) : 239-249. doi: 10.3934/jcd.2019012
##### References:

show all references

##### References:
[Example 1] Error and cost for the proposed asymptotic method $\mathcal{A}$ compared to the Lanczos solver $\mathcal{S}$. Note that each step of $\mathcal{A}$ uses $\mathcal{S}$ twice. $N$ is the number of time steps ($h = T/N$, $T = 10$)
 $N$ 1 2 4 8 16 64 256 1024 $h$ 10 5 2.5 1.25 0.625 0.156 0.039 0.01 Calls $\mathcal{S}$ 1 2 4 8 16 64 256 1024 to $\mathcal{S}$ $\mathcal{A}$ 2 4 8 16 32 128 512 2048 Error $\mathcal{S}$ 4147 110000 152.3 44.3 79.4 0.163 0.03 0.007 $\omega = 25$ $\mathcal{A}$ 0.593 0.254 0.251 0.206 0.252 0.249 0.248 0.248 Error $\mathcal{S}$ 4147 68000 9794 960.2 41.8 0.176 0.037 0.009 $\omega = 50$ $\mathcal{A}$ 0.14 0.062 0.081 0.047 0.033 0.032 0.032 0.032 Error $\mathcal{S}$ 4147 160000 7914 67.95 80.2 2.081 0.039 0.009 $\omega = 100$ $\mathcal{A}$ 0.077 0.015 0.021 0.011 0.001 0.001 0.001 0.001
 $N$ 1 2 4 8 16 64 256 1024 $h$ 10 5 2.5 1.25 0.625 0.156 0.039 0.01 Calls $\mathcal{S}$ 1 2 4 8 16 64 256 1024 to $\mathcal{S}$ $\mathcal{A}$ 2 4 8 16 32 128 512 2048 Error $\mathcal{S}$ 4147 110000 152.3 44.3 79.4 0.163 0.03 0.007 $\omega = 25$ $\mathcal{A}$ 0.593 0.254 0.251 0.206 0.252 0.249 0.248 0.248 Error $\mathcal{S}$ 4147 68000 9794 960.2 41.8 0.176 0.037 0.009 $\omega = 50$ $\mathcal{A}$ 0.14 0.062 0.081 0.047 0.033 0.032 0.032 0.032 Error $\mathcal{S}$ 4147 160000 7914 67.95 80.2 2.081 0.039 0.009 $\omega = 100$ $\mathcal{A}$ 0.077 0.015 0.021 0.011 0.001 0.001 0.001 0.001
[Example 2] Error and cost for the proposed asymptotic method $\mathcal{A}$ compared to the Lanczos solver $\mathcal{S}$. Note that each step of $\mathcal{A}$ uses $\mathcal{S}$ twice. $N$ is the number of time steps ($h = T/N$, $T = 5$)
 $N$ 1 2 4 8 16 32 64 128 256 $h$ 5 2.5 1.25 0.625 0.313 0.156 0.078 0.039 0.02 Calls $\mathcal{S}$ 1 2 4 8 16 32 64 128 256 to $\mathcal{S}$ $\mathcal{A}$ 2 4 8 16 32 64 128 256 512 Error $\mathcal{S}$ 4.237 88.3 96.3 98.1 1.18 0.447 0.189 0.092 0.047 $\omega = 25$ $\mathcal{A}$ 2.14 1.82 1.022 0.409 0.391 0.389 0.388 0.388 0.388 Error $\mathcal{S}$ 2.55 88.7 82.9 8.845 13.1 0.262 0.128 0.058 0.027 $\omega = 50$ $\mathcal{A}$ 0.452 0.38 0.198 0.045 0.038 0.039 0.039 0.039 0.039 Error $\mathcal{S}$ 2.39 32.5 20.1 18.1 2.5 2.9 0.106 0.045 0.02 $\omega = 100$ $\mathcal{A}$ 0.117 0.1 0.053 0.008 0.004 0.003 0.003 0.003 0.003
 $N$ 1 2 4 8 16 32 64 128 256 $h$ 5 2.5 1.25 0.625 0.313 0.156 0.078 0.039 0.02 Calls $\mathcal{S}$ 1 2 4 8 16 32 64 128 256 to $\mathcal{S}$ $\mathcal{A}$ 2 4 8 16 32 64 128 256 512 Error $\mathcal{S}$ 4.237 88.3 96.3 98.1 1.18 0.447 0.189 0.092 0.047 $\omega = 25$ $\mathcal{A}$ 2.14 1.82 1.022 0.409 0.391 0.389 0.388 0.388 0.388 Error $\mathcal{S}$ 2.55 88.7 82.9 8.845 13.1 0.262 0.128 0.058 0.027 $\omega = 50$ $\mathcal{A}$ 0.452 0.38 0.198 0.045 0.038 0.039 0.039 0.039 0.039 Error $\mathcal{S}$ 2.39 32.5 20.1 18.1 2.5 2.9 0.106 0.045 0.02 $\omega = 100$ $\mathcal{A}$ 0.117 0.1 0.053 0.008 0.004 0.003 0.003 0.003 0.003
 [1] Marissa Condon, Jing Gao, Arieh Iserles. On asymptotic expansion solvers for highly oscillatory semi-explicit DAEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4813-4837. doi: 10.3934/dcds.2016008 [2] Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169 [3] Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations & Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023 [4] Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080 [5] Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053 [6] Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861 [7] Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921 [8] Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441 [9] Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062 [10] Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 543-576. doi: 10.3934/dcds.2008.20.543 [11] Chunqing Lu. Asymptotic solutions of a nonlinear equation. Conference Publications, 2003, 2003 (Special) : 590-595. doi: 10.3934/proc.2003.2003.590 [12] Anna Geyer, Ronald Quirchmayr. Traveling wave solutions of a highly nonlinear shallow water equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1567-1604. doi: 10.3934/dcds.2018065 [13] Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347 [14] Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915 [15] Yahong Peng, Yaguang Wang. Reflection of highly oscillatory waves with continuous oscillatory spectra for semilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1293-1306. doi: 10.3934/dcds.2009.24.1293 [16] Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021 [17] Florian Monteghetti, Ghislain Haine, Denis Matignon. Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions. Mathematical Control & Related Fields, 2019, 9 (4) : 759-791. doi: 10.3934/mcrf.2019049 [18] Jorge Ferreira, Mauro De Lima Santos. Asymptotic behaviour for wave equations with memory in a noncylindrical domains. Communications on Pure & Applied Analysis, 2003, 2 (4) : 511-520. doi: 10.3934/cpaa.2003.2.511 [19] Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control & Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010 [20] Jeffrey R. Haack, Cory D. Hauck. Oscillatory behavior of Asymptotic-Preserving splitting methods for a linear model of diffusive relaxation. Kinetic & Related Models, 2008, 1 (4) : 573-590. doi: 10.3934/krm.2008.1.573

Impact Factor:

## Tools

Article outline

Figures and Tables