December  2019, 6(2): 345-360. doi: 10.3934/jcd.2019017

The Lie algebra of classical mechanics

1. 

School of Fundamental Sciences, Massey University, Palmerston North, New Zealand

2. 

Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Lardizabal 1 20018 Donostia / San Sebastian, Spain

Received  May 2019 Revised  September 2019 Published  November 2019

Classical mechanical systems are defined by their kinetic and potential energies. They generate a Lie algebra under the canonical Poisson bracket. This Lie algebra, which is usually infinite dimensional, is useful in analyzing the system, as well as in geometric numerical integration. But because the kinetic energy is quadratic in the momenta, the Lie algebra obeys identities beyond those implied by skew symmetry and the Jacobi identity. Some Poisson brackets, or combinations of brackets, are zero for all choices of kinetic and potential energy, regardless of the dimension of the system. Therefore, we study the universal object in this setting, the 'Lie algebra of classical mechanics' modelled on the Lie algebra generated by kinetic and potential energy of a simple mechanical system with respect to the canonical Poisson bracket. We show that it is the direct sum of an abelian algebra $ \mathfrak{X} $, spanned by 'modified' potential energies and isomorphic to the free commutative nonassociative algebra with one generator, and an algebra freely generated by the kinetic energy and its Poisson bracket with $ \mathfrak{X} $. We calculate the dimensions $ c_n $ of its homogeneous subspaces and determine the value of its entropy $ \lim_{n\to\infty} c_n^{1/n} $. It is $ 1.8249\dots $, a fundamental constant associated to classical mechanics. We conjecture that the class of systems with Euclidean kinetic energy metrics is already free, i.e., that the only linear identities satisfied by the Lie brackets of all such systems are those satisfied by the Lie algebra of classical mechanics.

Citation: Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017
References:
[1]

N. Bergeron and J. L. Loday, The symmetric operation in a free pre-Lie algebra is magmatic, Proc. Amer. Math. Soc., 139 (2011), 1585-1597.  doi: 10.1090/S0002-9939-2010-10813-4.  Google Scholar

[2]

S. BlanesF. Casas and J. Ros, Processing symplectic methods for near-integrable Hamiltonian systems, Celest. Mech. Dyn. Astr., 77 (2000), 17-35.  doi: 10.1023/A:1008311025472.  Google Scholar

[3]

S. BlanesF. Casas and J. Ros, High-order Runge-Kutta-Nystrom geometric methods with processing, Appl. Numer. Math., 39 (2001), 245-259.  doi: 10.1016/S0168-9274(00)00035-0.  Google Scholar

[4]

S. Blanes and P. C. Moan, Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 142 (2002), 313-330.  doi: 10.1016/S0377-0427(01)00492-7.  Google Scholar

[5]

M. P. Calvo Cabrero, Métodos Runge-Kutta-Nyström Simplécticos, Tesis Doctoral, Universidad de Valladolid, 1992. Google Scholar

[6]

F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, International Math. Research Notices, 8 (2001), 395-408.  doi: 10.1155/S1073792801000198.  Google Scholar

[7]

M. Grayson and R. Grossman, Models for nilpotent free Lie algebras, J. Algebra, 135 (1990), 177-191.  doi: 10.1016/0021-8693(90)90156-I.  Google Scholar

[8]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-05018-7.  Google Scholar

[9]

S.-J. Kang and M.-H. Kim, Free Lie algebras, generalized Witt formula, and the denominator identity, J. Algebra, 183 (1996), 560-594.  doi: 10.1006/jabr.1996.0233.  Google Scholar

[10]

M. Lazard, Groupes, Anneaux de Lie et problème de Burnside, Groups, Lie rings and cohomology theory, C.I.M.E. Summer Sch., Springer, Heidelberg, 20 (2011), 123-184.  doi: 10.1007/978-3-642-10937-9_2.  Google Scholar

[11]

M. Markl and E. Remm, Algebras with one operation including Poisson and other Lie-admissible algebras, J. Algebra, 299 (2006), 171-189.  doi: 10.1016/j.jalgebra.2005.09.018.  Google Scholar

[12]

R. I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM J. Sci. Comput., 16 (1995), 151-168.  doi: 10.1137/0916010.  Google Scholar

[13]

R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), 341-434.  doi: 10.1017/S0962492902000053.  Google Scholar

[14]

R. I. McLachlan and B. Ryland, The algebraic entropy of classical mechanics, J. Math. Phys., 44 (2003), 3071-3087.  doi: 10.1063/1.1576904.  Google Scholar

[15]

H. Munthe-Kaas and B. Owren, Computations in a free Lie algebra, R. Soc. Lond. Philos. Trans. A Math. Phys. Eng. Sci., 357 (1999), 957-981.  doi: 10.1098/rsta.1999.0361.  Google Scholar

[16]

A. Murua, Formal series and numerical integrators, Part I: Systems of ODEs and symplectic integrators, Appl. Numer. Math., 29 (1999), 221-251.  doi: 10.1016/S0168-9274(98)00064-6.  Google Scholar

[17]

R. Otter, The number of trees, Ann. Math., 49 (1948), 583-599.  doi: 10.2307/1969046.  Google Scholar

[18]

C. Reutenauer, Free Lie Algebras, London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.  Google Scholar

[19]

N. J. A. Sloane, The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc., 50 (2003), 912–915, https://oeis.org.  Google Scholar

[20]

J. H. M. Wedderburn, The functional equation $g(x^2) = 2\alpha x + [g(x)]^2$, Ann. Math., 24 (1922), 121-140.  doi: 10.2307/1967710.  Google Scholar

[21]

J. WisdomM. Holman and J. Touma, Symplectic correctors, Integration Algorithms and Classical Mechanics, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 10 (1996), 217-244.   Google Scholar

[22]

H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262-268.  doi: 10.1016/0375-9601(90)90092-3.  Google Scholar

show all references

References:
[1]

N. Bergeron and J. L. Loday, The symmetric operation in a free pre-Lie algebra is magmatic, Proc. Amer. Math. Soc., 139 (2011), 1585-1597.  doi: 10.1090/S0002-9939-2010-10813-4.  Google Scholar

[2]

S. BlanesF. Casas and J. Ros, Processing symplectic methods for near-integrable Hamiltonian systems, Celest. Mech. Dyn. Astr., 77 (2000), 17-35.  doi: 10.1023/A:1008311025472.  Google Scholar

[3]

S. BlanesF. Casas and J. Ros, High-order Runge-Kutta-Nystrom geometric methods with processing, Appl. Numer. Math., 39 (2001), 245-259.  doi: 10.1016/S0168-9274(00)00035-0.  Google Scholar

[4]

S. Blanes and P. C. Moan, Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 142 (2002), 313-330.  doi: 10.1016/S0377-0427(01)00492-7.  Google Scholar

[5]

M. P. Calvo Cabrero, Métodos Runge-Kutta-Nyström Simplécticos, Tesis Doctoral, Universidad de Valladolid, 1992. Google Scholar

[6]

F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, International Math. Research Notices, 8 (2001), 395-408.  doi: 10.1155/S1073792801000198.  Google Scholar

[7]

M. Grayson and R. Grossman, Models for nilpotent free Lie algebras, J. Algebra, 135 (1990), 177-191.  doi: 10.1016/0021-8693(90)90156-I.  Google Scholar

[8]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-05018-7.  Google Scholar

[9]

S.-J. Kang and M.-H. Kim, Free Lie algebras, generalized Witt formula, and the denominator identity, J. Algebra, 183 (1996), 560-594.  doi: 10.1006/jabr.1996.0233.  Google Scholar

[10]

M. Lazard, Groupes, Anneaux de Lie et problème de Burnside, Groups, Lie rings and cohomology theory, C.I.M.E. Summer Sch., Springer, Heidelberg, 20 (2011), 123-184.  doi: 10.1007/978-3-642-10937-9_2.  Google Scholar

[11]

M. Markl and E. Remm, Algebras with one operation including Poisson and other Lie-admissible algebras, J. Algebra, 299 (2006), 171-189.  doi: 10.1016/j.jalgebra.2005.09.018.  Google Scholar

[12]

R. I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM J. Sci. Comput., 16 (1995), 151-168.  doi: 10.1137/0916010.  Google Scholar

[13]

R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), 341-434.  doi: 10.1017/S0962492902000053.  Google Scholar

[14]

R. I. McLachlan and B. Ryland, The algebraic entropy of classical mechanics, J. Math. Phys., 44 (2003), 3071-3087.  doi: 10.1063/1.1576904.  Google Scholar

[15]

H. Munthe-Kaas and B. Owren, Computations in a free Lie algebra, R. Soc. Lond. Philos. Trans. A Math. Phys. Eng. Sci., 357 (1999), 957-981.  doi: 10.1098/rsta.1999.0361.  Google Scholar

[16]

A. Murua, Formal series and numerical integrators, Part I: Systems of ODEs and symplectic integrators, Appl. Numer. Math., 29 (1999), 221-251.  doi: 10.1016/S0168-9274(98)00064-6.  Google Scholar

[17]

R. Otter, The number of trees, Ann. Math., 49 (1948), 583-599.  doi: 10.2307/1969046.  Google Scholar

[18]

C. Reutenauer, Free Lie Algebras, London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.  Google Scholar

[19]

N. J. A. Sloane, The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc., 50 (2003), 912–915, https://oeis.org.  Google Scholar

[20]

J. H. M. Wedderburn, The functional equation $g(x^2) = 2\alpha x + [g(x)]^2$, Ann. Math., 24 (1922), 121-140.  doi: 10.2307/1967710.  Google Scholar

[21]

J. WisdomM. Holman and J. Touma, Symplectic correctors, Integration Algorithms and Classical Mechanics, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 10 (1996), 217-244.   Google Scholar

[22]

H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262-268.  doi: 10.1016/0375-9601(90)90092-3.  Google Scholar

Table 1.  Elements of order up to 6 of a generalized Hall basis $ \mathcal H $ for $ L(A,B) $. The elements in the Lie ideal $ \mathcal{I} $ generated by $ [L^0(A,B),L^0(A,B)] $ are depicted in red. The elements belonging to the basis $ \mathcal B $ for $ L_{\mathfrak P}(A,B) = L(A,B)/\mathcal{I} $ are depicted in black. The elements are listed in the total order defined in §2.3
$U$ order$(U)$ degree$(U)$
$B $ 1 0
$[B,[B,A]] $ 3 0
${[B,[B,[B,A]]]} $ 4 0
$ [[B,[B,A]],[B,A]] $ 5 0
${ [B,[B,[B,[B,A]]]]} $ 5 0
${[[B,[B,[B,A]]],[B,A]]} $ 6 0
${[B,[B,[B,[B,[B,A]]]]]} $ 6 0
$[B,A] $ 2 1
$[[B,[B,A]],A] $ 4 1
${[[B,[B,[B,A]]],A]} $ 5 1
$ [[[B,[B,A]],[B,A]],A ] $ 6 1
$ {[[B,[B,[B,[B,A]]]],A]} $ 6 1
$ [[B,A],[[B,[B,A]],A]]$ 6 1
$A $ 1 2
$[[B,A],A] $ 3 2
$ [[[B,[B,A]],A],A] $ 5 2
$ [[B,A],[[B,A],A]] $ 5 2
${ [[[B,[B,[B,A]]],A],A]} $ 6 2
$ [A,[[B,A],A]] $ 4 3
$ [A,[[[B,[B,A]],A],A]]$ 6 3
$ [A,[[B,A],[[B,A],A]]] $ 6 3
$ [A,[A,[[B,A],A]]] $ 5 4
$ [A,[A,[A,[[B,A],A]]]]$ 6 5
$U$ order$(U)$ degree$(U)$
$B $ 1 0
$[B,[B,A]] $ 3 0
${[B,[B,[B,A]]]} $ 4 0
$ [[B,[B,A]],[B,A]] $ 5 0
${ [B,[B,[B,[B,A]]]]} $ 5 0
${[[B,[B,[B,A]]],[B,A]]} $ 6 0
${[B,[B,[B,[B,[B,A]]]]]} $ 6 0
$[B,A] $ 2 1
$[[B,[B,A]],A] $ 4 1
${[[B,[B,[B,A]]],A]} $ 5 1
$ [[[B,[B,A]],[B,A]],A ] $ 6 1
$ {[[B,[B,[B,[B,A]]]],A]} $ 6 1
$ [[B,A],[[B,[B,A]],A]]$ 6 1
$A $ 1 2
$[[B,A],A] $ 3 2
$ [[[B,[B,A]],A],A] $ 5 2
$ [[B,A],[[B,A],A]] $ 5 2
${ [[[B,[B,[B,A]]],A],A]} $ 6 2
$ [A,[[B,A],A]] $ 4 3
$ [A,[[[B,[B,A]],A],A]]$ 6 3
$ [A,[[B,A],[[B,A],A]]] $ 6 3
$ [A,[A,[[B,A],A]]] $ 5 4
$ [A,[A,[A,[[B,A],A]]]]$ 6 5
Table 5.  Dimensions of Lie algebras graded by order. Column 2: Of the free Lie algebra with two generators. Column 3: Of the Lie algebra of classical mechanics, $ L_\mathfrak P(A,B) $. Column 4: Dimensions $ x_n $ of the subspace of elements of degree 0 in $ L^n_\mathfrak P(A,B) $. Column 5: Dimensions $ y_n $ of the subspace of elements of degree 1 in $ L^n_\mathfrak P(A,B) $
$n$ $\dim L^n(A,B)$ $\dim L^n_\mathfrak{P}(A,B)$ $x_n$ $y_n$
1 2 2 1
2 1 1 1
3 2 2 1
4 3 2 2
5 6 4 1
6 9 5 4
7 18 10 2
8 30 14 9
9 56 25 3
10 99 39 18
11 186 69 6
12 335 110 41
13 630 193 11
14 1161 320 88
15 2182 555 23
16 4080 938 198
17 7710 1630 46
18 14532 2786 441
19 27594 4852 98
20 52377 8370
$n$ $\dim L^n(A,B)$ $\dim L^n_\mathfrak{P}(A,B)$ $x_n$ $y_n$
1 2 2 1
2 1 1 1
3 2 2 1
4 3 2 2
5 6 4 1
6 9 5 4
7 18 10 2
8 30 14 9
9 56 25 3
10 99 39 18
11 186 69 6
12 335 110 41
13 630 193 11
14 1161 320 88
15 2182 555 23
16 4080 938 198
17 7710 1630 46
18 14532 2786 441
19 27594 4852 98
20 52377 8370
Table 2.  Image by $\Theta$ and $\Phi_V$ of Prop.2 of elements in $L_\mathfrak{P}(A,B)$ of order up to 6. Repeated indices are summed from 1 to $d$
Table 3.  Dimensions of homogeneous subspaces of $ L_\mathfrak P(A,B) $ of order $ n $ (rows $ n = 1,\ldots,18 $) and degree $ m-1 $ (columns $ m = 1,\ldots,18 $)
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 4 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0
0 4 0 6 0 3 0 1 0 0 0 0 0 0 0 0 0 0
3 0 9 0 8 0 4 0 1 0 0 0 0 0 0 0 0 0
0 9 0 14 0 11 0 4 0 1 0 0 0 0 0 0 0 0
6 0 20 0 23 0 14 0 5 0 1 0 0 0 0 0 0 0
0 18 0 37 0 32 0 17 0 5 0 1 0 0 0 0 0 0
11 0 46 0 62 0 46 0 21 0 6 0 1 0 0 0 0 0
0 41 0 90 0 97 0 60 0 25 0 6 0 1 0 0 0 0
23 0 106 0 165 0 144 0 80 0 29 0 7 0 1 0 0 0
0 88 0 228 0 274 0 206 0 100 0 34 0 7 0 1 0 0
46 0 248 0 438 0 438 0 285 0 127 0 39 0 8 0 1 0
0 198 0 562 0 777 0 658 0 384 0 154 0 44 0 8 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 4 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0
0 4 0 6 0 3 0 1 0 0 0 0 0 0 0 0 0 0
3 0 9 0 8 0 4 0 1 0 0 0 0 0 0 0 0 0
0 9 0 14 0 11 0 4 0 1 0 0 0 0 0 0 0 0
6 0 20 0 23 0 14 0 5 0 1 0 0 0 0 0 0 0
0 18 0 37 0 32 0 17 0 5 0 1 0 0 0 0 0 0
11 0 46 0 62 0 46 0 21 0 6 0 1 0 0 0 0 0
0 41 0 90 0 97 0 60 0 25 0 6 0 1 0 0 0 0
23 0 106 0 165 0 144 0 80 0 29 0 7 0 1 0 0 0
0 88 0 228 0 274 0 206 0 100 0 34 0 7 0 1 0 0
46 0 248 0 438 0 438 0 285 0 127 0 39 0 8 0 1 0
0 198 0 562 0 777 0 658 0 384 0 154 0 44 0 8 0 1
Table 4.  Dimensions of homogeneous subspaces of $ \mathcal T $ of order $ n $ (rows $ n = 1,\ldots,18 $) and degree $ m-1 $ (columns $ m = 1,\ldots,18 $)
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 4 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0
0 4 0 6 0 3 0 1 0 0 0 0 0 0 0 0 0 0
3 0 10 0 9 0 4 0 1 0 0 0 0 0 0 0 0 0
0 9 0 17 0 12 0 4 0 1 0 0 0 0 0 0 0 0
6 0 24 0 30 0 16 0 5 0 1 0 0 0 0 0 0 0
0 20 0 50 0 44 0 20 0 5 0 1 0 0 0 0 0 0
11 0 63 0 96 0 67 0 25 0 6 0 1 0 0 0 0 0
0 48 0 146 0 164 0 91 0 30 0 6 0 1 0 0 0 0
23 0 164 0 315 0 267 0 126 0 36 0 7 0 1 0 0 0
0 115 0 437 0 592 0 408 0 163 0 42 0 7 0 1 0 0
47 0 444 0 1022 0 1059 0 603 0 213 0 49 0 8 0 1 0
0 286 0 1300 0 2126 0 1754 0 856 0 265 0 56 0 8 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 4 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0
0 4 0 6 0 3 0 1 0 0 0 0 0 0 0 0 0 0
3 0 10 0 9 0 4 0 1 0 0 0 0 0 0 0 0 0
0 9 0 17 0 12 0 4 0 1 0 0 0 0 0 0 0 0
6 0 24 0 30 0 16 0 5 0 1 0 0 0 0 0 0 0
0 20 0 50 0 44 0 20 0 5 0 1 0 0 0 0 0 0
11 0 63 0 96 0 67 0 25 0 6 0 1 0 0 0 0 0
0 48 0 146 0 164 0 91 0 30 0 6 0 1 0 0 0 0
23 0 164 0 315 0 267 0 126 0 36 0 7 0 1 0 0 0
0 115 0 437 0 592 0 408 0 163 0 42 0 7 0 1 0 0
47 0 444 0 1022 0 1059 0 603 0 213 0 49 0 8 0 1 0
0 286 0 1300 0 2126 0 1754 0 856 0 265 0 56 0 8 0 1
[1]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[2]

Michael Entov, Leonid Polterovich, Daniel Rosen. Poisson brackets, quasi-states and symplectic integrators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1455-1468. doi: 10.3934/dcds.2010.28.1455

[3]

Fasma Diele, Carmela Marangi. Positive symplectic integrators for predator-prey dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2661-2678. doi: 10.3934/dcdsb.2017185

[4]

A. Alamo, J. M. Sanz-Serna. Word combinatorics for stochastic differential equations: Splitting integrators. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2163-2195. doi: 10.3934/cpaa.2019097

[5]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[6]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[7]

Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167

[8]

G. Mashevitzky, B. Plotkin and E. Plotkin. Automorphisms of categories of free algebras of varieties. Electronic Research Announcements, 2002, 8: 1-10.

[9]

Luis Álvarez–cónsul, David Fernández. Noncommutative bi-symplectic $\mathbb{N}Q$-algebras of weight 1. Conference Publications, 2015, 2015 (special) : 19-28. doi: 10.3934/proc.2015.0019

[10]

Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105

[11]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[12]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

[13]

Özlem Orhan, Teoman Özer. New conservation forms and Lie algebras of Ermakov-Pinney equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 735-746. doi: 10.3934/dcdss.2018046

[14]

Thierry Paul, David Sauzin. Normalization in Banach scale Lie algebras via mould calculus and applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4461-4487. doi: 10.3934/dcds.2017191

[15]

Lukas Einkemmer, Alexander Ostermann. A comparison of boundary correction methods for Strang splitting. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2641-2660. doi: 10.3934/dcdsb.2018081

[16]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[17]

Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485-511. doi: 10.3934/jcd.2019025

[18]

Yanyan Shi, Yajuan Sun, Yulei Wang, Jian Liu. Study of adaptive symplectic methods for simulating charged particle dynamics. Journal of Computational Dynamics, 2019, 6 (2) : 429-448. doi: 10.3934/jcd.2019022

[19]

Ilwoo Cho, Palle Jorgense. Free probability on $ C^{*}$-algebras induced by hecke algebras over primes. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2221-2252. doi: 10.3934/dcdss.2019143

[20]

Andrew N. W. Hone, Matteo Petrera. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. Journal of Geometric Mechanics, 2009, 1 (1) : 55-85. doi: 10.3934/jgm.2009.1.55

 Impact Factor: 

Metrics

  • PDF downloads (23)
  • HTML views (27)
  • Cited by (0)

Other articles
by authors

[Back to Top]