$ N $ | $ 401 $ | $ 1001 $ | $ 4001 $ |
maximum | $ 3 $ | $ 3 $ | $ 3 $ |
minimum | $ 3 $ | $ 3 $ | $ 3 $ |
average | $ 3 $ | $ 3 $ | $ 3 $ |
We propose a Fourier pseudo-spectral scheme for the space-fractional nonlinear Schrödinger equation. The proposed scheme has the following features: it is linearly implicit, it preserves two invariants of the equation, its unique solvability is guaranteed without any restrictions on space and time step sizes. The scheme requires solving a complex symmetric linear system per time step. To solve the system efficiently, we also present a certain variable transformation and preconditioner.
Citation: |
Figure 5. Error behaviour obtained by the linearly implicit scheme (9) for the case $ \alpha = 1.6 $: (LEFT) global error, and (RIGHT) error at $ t = 20 $. Errors are measured by $ \max_k | U_k^{(n)} - U_{\text{ref},k}^{(n)}| $, where the reference solution was generated by the nonlinear scheme (14) with $ N = 303 $ and $ \Delta t = 0.001 $
Figure 12. The number of iterations for the preconditioned COCG method applied to (19) with the matrix $ M = I + \mathrm{i} \Delta t D_\alpha $. The initial condition is set to $ u_0 (x) = 2\exp (0.5 \mathrm{i} x){\rm{sech}}(\sqrt{2}(x-10)) $. The parameters are set to $ \alpha = 2 $ and $ N = 401 $. (LEFT) $ \Delta t = 0.01,0.02 $, (RIGHT) $ \Delta t = 0.05 $
Table 1.
The maximum, minimum and average number of iterations of the preconditioned Bi-CGSTAB method: the time step size is set to
$ N $ | $ 401 $ | $ 1001 $ | $ 4001 $ |
maximum | $ 3 $ | $ 3 $ | $ 3 $ |
minimum | $ 3 $ | $ 3 $ | $ 3 $ |
average | $ 3 $ | $ 3 $ | $ 3 $ |
Table 2.
Average CPU time of
$ N $ | $ 1001 $ | $ 2001 $ | $ 4001 $ | $ 8001 $ |
CPU time | $ 0.794 $ | $ 1.524 $ | $ 5.615 $ | $ 8.223 $ |
Table 3.
The maximum, minimum and average number of iterations of the preconditioned Bi-CGSTAB method: the time step size is set to
$ N $ | $ 401 $ | $ 1001 $ | $ 4001 $ |
maximum | $ 6 $ | $ 6 $ | $ 6 $ |
minimum | $ 5 $ | $ 5 $ | $ 5 $ |
average | $ 5.020 $ | $ 5.020 $ | $ 5.020 $ |
Table 4.
The maximum, minimum and average number of iterations of the preconditioned Bi-CGSTAB method: the time step size is set to
$ N $ | $ 401 $ | $ 1001 $ | $ 4001 $ |
maximum | $ 4 $ | $ 4 $ | $ 4 $ |
minimum | $ 3 $ | $ 3 $ | $ 3 $ |
average | $ 3.286 $ | $ 3.291 $ | $ 3.323 $ |
[1] |
C. Besse, A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 42 (2004), 934-952.
doi: 10.1137/S0036142901396521.![]() ![]() ![]() |
[2] |
C. Besse, S. Descombes, G. Dujardin and I. Lacroix-Violet, Energy preserving methods for nonlinear Schrödinger equations, (2018).
![]() |
[3] |
E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neale, B. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the "average vector field" method, J. Comput. Phys., 231 (2012), 6770-6789.
doi: 10.1016/j.jcp.2012.06.022.![]() ![]() ![]() |
[4] |
Y. Cho, G. Hwang, S. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete Contin. Dyn. Syst., 35 (2015), 2863-2880.
doi: 10.3934/dcds.2015.35.2863.![]() ![]() ![]() |
[5] |
M. Dahlby and B. Owren, A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33 (2011), 2318-2340.
doi: 10.1137/100810174.![]() ![]() ![]() |
[6] |
M. Delfour, M. Fortin and G. Payre, Finite-difference solutions of a non-linear Schrödinger equation, J. Comput. Phys., 44 (1981), 277-288.
doi: 10.1016/0021-9991(81)90052-8.![]() ![]() ![]() |
[7] |
S. W. Duo and Y. Z. Zhang, Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation, Comput. Math. Appl., 71 (2016), 2257-2271.
doi: 10.1016/j.camwa.2015.12.042.![]() ![]() ![]() |
[8] |
E. Faou, Geometric Numerical Integration and Schrödinger Equations, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2012.
doi: 10.4171/100.![]() ![]() ![]() |
[9] |
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Emended edition, Emended and with a preface by Daniel F. Styer. Dover Publications, Inc., Mineola, NY, 2010.
![]() ![]() |
[10] |
D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations, Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC Press, Boca Raton, FL, 2011.
![]() ![]() |
[11] |
B. L. Guo, Y. Q. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. Comput., 204 (2008), 468-477.
doi: 10.1016/j.amc.2008.07.003.![]() ![]() ![]() |
[12] |
B. L. Guo and Z. H. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Comm. Partial Differential Equations, 36 (2011), 247-255.
doi: 10.1080/03605302.2010.503769.![]() ![]() ![]() |
[13] |
X. Y. Guo and M. Y. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 082104, 9 pp.
doi: 10.1063/1.2235026.![]() ![]() ![]() |
[14] |
K. Kirkpatrick, E. Lenzmann and G. Staffilani, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys., 317 (2013), 563-591.
doi: 10.1007/s00220-012-1621-x.![]() ![]() ![]() |
[15] |
N. Laskin, Fractional Quantum Mechanics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018.
doi: 10.1142/10541.![]() ![]() ![]() |
[16] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E (3), 66 (2002), 056108, 7 pp.
doi: 10.1103/PhysRevE.66.056108.![]() ![]() ![]() |
[17] |
N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2.![]() ![]() ![]() |
[18] |
M. Li, X.-M. Gu, C. M. Huang, M. F. Fei and G. Y. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys., 358 (2018), 256-282.
doi: 10.1016/j.jcp.2017.12.044.![]() ![]() ![]() |
[19] |
M. Li, C. Huang and W. Ming, A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations, Numer. Algorithms, (2019), 1–26.
doi: 10.1007/s11075-019-00672-3.![]() ![]() |
[20] |
M. Li, C. M. Huang and P. D. Wang, Galerkin finite element method for nonlinear fractional Schrödinger equations, Numer. Algorithms, 74 (2017), 499-525.
doi: 10.1007/s11075-016-0160-5.![]() ![]() ![]() |
[21] |
S. Longhi, Fractional Schrödinger equation in optics, Opt. Lett., 40 (2015), 1117.
doi: 10.1364/OL.40.001117.![]() ![]() |
[22] |
T. Matsuo and D. Furihata, Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations, J. Comput. Phys., 171 (2001), 425-447.
doi: 10.1006/jcph.2001.6775.![]() ![]() ![]() |
[23] |
Y. Miyatake and T. Matsuo, Conservative finite difference schemes for the Degasperis-Procesi equation, J. Comput. Appl. Math., 236 (2012), 3728-3740.
doi: 10.1016/j.cam.2011.09.004.![]() ![]() ![]() |
[24] |
Y. Miyatake, T. Matsuo and D. Furihata, Invariants-preserving integration of the modified Camassa-Holm equation, Jpn. J. Ind. Appl. Math., 28 (2011), 351-381.
doi: 10.1007/s13160-011-0043-z.![]() ![]() ![]() |
[25] |
G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7 pp.
doi: 10.1088/1751-8113/41/4/045206.![]() ![]() ![]() |
[26] |
T. Sogabe and S.-L. Zhang, A COCR method for solving complex symmetric linear systems, J. Comput. Appl. Math., 199 (2007), 297-303.
doi: 10.1016/j.cam.2005.07.032.![]() ![]() ![]() |
[27] |
H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), 631-644.
doi: 10.1137/0913035.![]() ![]() ![]() |
[28] |
H. A. van der Vorst and J. B. Melissen, A Petrov-Galerkin type method for solving ${A}x = b$, where ${A}$ is symmetric complex, IEEE Trans. Mag., 26 (1990), 706-708.
![]() |
[29] |
D. L. Wang, A. G. Xiao and W. Yang, A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys., 272 (2014), 644-655.
doi: 10.1016/j.jcp.2014.04.047.![]() ![]() ![]() |
[30] |
P. D. Wang and C. M. Huang, A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation, Numer. Algorithms, 69 (2015), 625-641.
doi: 10.1007/s11075-014-9917-x.![]() ![]() ![]() |
[31] |
P. D. Wang and C. M. Huang, An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys., 293 (2015), 238-251.
doi: 10.1016/j.jcp.2014.03.037.![]() ![]() ![]() |
[32] |
P. D. Wang and C. M. Huang, Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions, Comput. Math. Appl., 71 (2016), 1114-1128.
doi: 10.1016/j.camwa.2016.01.022.![]() ![]() ![]() |
[33] |
P. D. Wang and C. M. Huang, Structure-preserving numerical methods for the fractional Schrödinger equation, Appl. Numer. Math., 129 (2018), 137-158.
doi: 10.1016/j.apnum.2018.03.008.![]() ![]() ![]() |
[34] |
P. D. Wang, C. M. Huang and L. B. Zhao, Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation, J. Comput. Appl. Math., 306 (2016), 231-247.
doi: 10.1016/j.cam.2016.04.017.![]() ![]() ![]() |
[35] |
Y. Q. Zhang, X. Liu, M. R. Belić, W. P. Zhong, Y. P. Zhang and M. Xiao, Propagation dynamics of a light beam in a fractional Schrödinger equation, Phys. Rev. Lett., 115 (2015), 180403.
doi: 10.1103/PhysRevLett.115.180403.![]() ![]() |
Numerical solutions for the case
Numerical solutions for the case
Numerical solutions for the case
Numerical solutions for the case
Error behaviour obtained by the linearly implicit scheme (9) for the case
Errors of the discrete mass
Errors of the discrete mass
Errors of the discrete mass
Errors of the discrete energy
The number of iterations for the COCG method to the convergence at each time step. (LEFT)
The number of iterations for the Bi-CGSTAB method applied to (10). The parameters are set to
The number of iterations for the preconditioned COCG method applied to (19) with the matrix
The number of iterations for the preconditioned COCG method applied to (19) with the matrix