[1]
|
J. Amezcua, E. Kalnay, K. Ide and S. Reich, Ensemble transform Kalman-Bucy filters, Q. J. R. Meteor. Soc., 140 (2014), 995-1004.
doi: 10.1002/qj.2186.
|
[2]
|
U. M. Ascher, Numerical Methods for Evolutionary Differential Equations, Computational Science & Engineering, 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
doi: 10.1137/1.9780898718911.
|
[3]
|
K. Bergemann and S. Reich, A localization technique for ensemble Kalman filters, Q. J. R. Meteorological Soc., 136 (2010), 701-707.
doi: 10.1002/qj.591.
|
[4]
|
K. Bergemann and S. Reich, A mollified ensemble Kalman filter, Q. J. R. Meteorological Soc., 136 (2010), 1636-1643.
doi: 10.1002/qj.672.
|
[5]
|
K. Bergemann and S. Reich, An ensemble Kalman-Bucy filter for continuous data assimilation, Meteorolog. Zeitschrift, 21 (2012), 213-219.
doi: 10.1127/0941-2948/2012/0307.
|
[6]
|
D. Blömker, C. Schillings and P. Wacker, A strongly convergent numerical scheme for ensemble Kalman inversion, SIAM J. Numer. Anal., 56 (2018), 2537-2562.
doi: 10.1137/17M1132367.
|
[7]
|
Y. Chen and D. S. Oliver, Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification, Computational Geoscience, 17 (2013), 689-703.
doi: 10.1007/s10596-013-9351-5.
|
[8]
|
N. Chustagulprom, S. Reich and M. Reinhardt, A hybrid ensemble transform filter for nonlinear and spatially extended dynamical systems, SIAM/ASA J. Uncertainty Quantification, 4 (2016), 592-608.
doi: 10.1137/15M1040967.
|
[9]
|
D. Crisan and J. Xiong, Approximate McKean-Vlasov representation for a class of SPDEs, Stochastics, 82 (2010), 53-68.
doi: 10.1080/17442500902723575.
|
[10]
|
F. Daum and J. Huang, Particle filter for nonlinear filters, in Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, (2011), 5920–5923.
|
[11]
|
J. de Wiljes, S. Reich and W. Stannat, Long-time stability and accuracy of the ensemble Kalman-Bucy filter for fully observed processes and small measurement noise, SIAM J. Appl. Dyn. Syst., 17 (2018), 1152-1181.
doi: 10.1137/17M1119056.
|
[12]
|
P. Degond and F.-J. Mustieles, A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Comput., 11 (1990), 293-310.
doi: 10.1137/0911018.
|
[13]
|
G. Detommaso, T. Cui, A. Spantini, Y. Marzouk and R. Scheichl, A Stein variational Newton method, Advances in Neural Information Processing Systems (NIPS 2018), 31 (2018), 9187-9197.
|
[14]
|
A. A. Emerik and A. C. Reynolds, Ensemble smoother with multiple data assimilation, Computers & Geosciences, 55 (2013), 3-15.
doi: 10.1016/j.cageo.2012.03.011.
|
[15]
|
G. Evensen, Data Assimilation. The Ensemble Kalman Filter, Second edition, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-03711-5.
|
[16]
|
A. Garbuno-Inigo, F. Hoffmann, W. Li and A. Stuart, Gradient Structure for the Ensemble Kalman Flow with Noise, Technical Report arXiv: 1903.08866.v2, Caltech, 2019.
|
[17]
|
O. Gonzalez, Time integration of discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449-467.
doi: 10.1007/BF02440162.
|
[18]
|
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Mathematical Sciences, 160. Springer-Verlag, New York, 2005.
|
[19]
|
N. B. Kovachki and A. M. Stuart, Ensemble Kalman inversion: A derivative-free technique for machine learning tasks, Inverse Problems, 35 (2019), 095005, 35 pp, arXiv: 1808.03620.
|
[20]
|
K. Law, A. Stuart and K. Zygalakis, Data Assimilation: A Mathematical Introduction, Texts in Applied Mathematics, 62. Springer, Cham, 2015.
doi: 10.1007/978-3-319-20325-6.
|
[21]
|
Q. Liu and D. Wang, Stein variational gradient descent: A general purpose Bayesian inference algorithm, in Advances in Neural Information Processing Systems (NIPS 2016), 29 (2016), 2378–2386.
|
[22]
|
E. Lorenz, Deterministic non-periodic flows, J. Atmos. Sci., 20 (1963), 130-141.
|
[23]
|
R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, Phil Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 357 (1999), 1021-1045.
doi: 10.1098/rsta.1999.0363.
|
[24]
|
J. Nocedal and S. J. Wright, Numerical Optimization, Second edition. Springer Series in Operations Research and Financial Engineering. Springer, New York, 2006.
|
[25]
|
Y. Ollivier, Online natural gradient as a Kalman filter, Electronic Journal of Statistics, 12 (2018), 2930-2961.
doi: 10.1214/18-EJS1468.
|
[26]
|
G. Pavliotis, Stochastic Processes and Applications. Diffusion Processes, the Fokker-Planck and Langevin Equations, Texts in Applied Mathematics, 60. Springer, New York, 2014.
doi: 10.1007/978-1-4939-1323-7.
|
[27]
|
S. Reich, Enhancing energy conserving methods, BIT, 36 (1996), 122-134.
doi: 10.1007/BF01740549.
|
[28]
|
S. Reich, A dynamical systems framework for intermittent data assimilation, BIT Numer Math, 51 (2011), 235-249.
doi: 10.1007/s10543-010-0302-4.
|
[29]
|
S. Reich, Data assimilation: The Schrödinger perspective, Acta Numerica, 28 (2019), 635-710.
doi: 10.1017/S0962492919000011.
|
[30]
|
S. Reich and C. Cotter, Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge University Press, Cambridge, 2015.
doi: 10.1017/CBO9781107706804.
|
[31]
|
C. P. Robert, The Bayesian Choice: From Decision-Theoretic Motivations to Computational Implementations, Second edition, Springer Texts in Statistics, Springer-Verlag, New York, 2001.
|
[32]
|
G. Russo, Deterministic diffusion of particles, Comm. Pure Appl. Math., 43 (1990), 697-733.
doi: 10.1002/cpa.3160430602.
|
[33]
|
P. Sakov and P. Oke, A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters, Tellus, 60A (2008), 361-371.
|
[34]
|
P. Sakov, D. Oliver and L. Bertino, An iterative EnKF for strongly nonlinear systems, Mon. Wea. Rev., 140 (2012), 1988-2004.
doi: 10.1175/MWR-D-11-00176.1.
|
[35]
|
A. M. Stuart, Numerical analysis and dynamical systems, Acta Numer., Cambridge Univ. Press, Cambridge, 3 (1994), 467–572.
doi: 10.1017/S0962492900002488.
|
[36]
|
A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.
doi: 10.1137/1.9780898717921.
|
[37]
|
H. Yserentant, A new class of particle methods, Numer. Math., 76 (1997), 87-109.
doi: 10.1007/s002110050255.
|