December  2019, 6(2): 401-408. doi: 10.3934/jcd.2019020

Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor

Institut für Mathematik, MA 7-1, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany

* Corresponding author: Yuri B. Suris

Received  February 2019 Published  November 2019

Kahan discretization is applicable to any quadratic vector field and produces a birational map which approximates the shift along the phase flow. For a planar quadratic Hamiltonian vector field with a linear Poisson tensor and with a quadratic Hamilton function, this map is known to be integrable and to preserve a pencil of conics. In the paper "Three classes of quadratic vector fields for which the Kahan discretization is the root of a generalised Manin transformation" by P. van der Kamp et al. [5], it was shown that the Kahan discretization can be represented as a composition of two involutions on the pencil of conics. In the present note, which can be considered as a comment to that paper, we show that this result can be reversed. For a linear form $ \ell(x,y) $, let $ B_1,B_2 $ be any two distinct points on the line $ \ell(x,y) = -c $, and let $ B_3,B_4 $ be any two distinct points on the line $ \ell(x,y) = c $. Set $ B_0 = \tfrac{1}{2}(B_1+B_3) $ and $ B_5 = \tfrac{1}{2}(B_2+B_4) $; these points lie on the line $ \ell(x,y) = 0 $. Finally, let $ B_\infty $ be the point at infinity on this line. Let $ \mathfrak E $ be the pencil of conics with the base points $ B_1,B_2,B_3,B_4 $. Then the composition of the $ B_\infty $-switch and of the $ B_0 $-switch on the pencil $ \mathfrak E $ is the Kahan discretization of a Hamiltonian vector field $ f = \ell(x,y)\begin{pmatrix}\partial H/\partial y \\ -\partial H/\partial x \end{pmatrix} $ with a quadratic Hamilton function $ H(x,y) $. This birational map $ \Phi_f:\mathbb C P^2\dashrightarrow\mathbb C P^2 $ has three singular points $ B_0,B_2,B_4 $, while the inverse map $ \Phi_f^{-1} $ has three singular points $ B_1,B_3,B_5 $.

Citation: Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020
References:
[1]

E. Celledoni, R. I. McLachlan, B. Owren and G. R. W. Quispel, Geometric properties of Kahan's method, J. Phys. A, 46 (2013), 025201, 12 pp. doi: 10.1088/1751-8113/46/2/025201.  Google Scholar

[2]

E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren and G. R. W. Quispel, Integrability properties of Kahan's method, J. Phys. A, 47 (2014), 365202, 20 pp. doi: 10.1088/1751-8113/47/36/365202.  Google Scholar

[3]

E. Celledoni, D. I. McLaren, B. Owren and G. R. W. Quispel, Geometric and integrability properties of Kahan's method: The preservation of certain quadratic integrals, J. Phys. A, 52 (2019), 065201, 9 pp. doi: 10.1088/1751-8121/aafb1e.  Google Scholar

[4]

P. H. van der Kamp, D. I. McLaren and G. R. W. Quispel, Generalised Manin transformations and QRT maps, preprint, arXiv: 1806.05340. Google Scholar

[5]

P. H. van der Kamp, E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren and G. R. W. Quispel, Three classes of quadratic vector fields for which the Kahan discretization is the root of a generalised Manin transformation, J. Phys. A, 52 (2019), 045204. Google Scholar

[6]

W. Kahan, Unconventional Numerical Methods for Trajectory Calculations, Unpublished lecture notes, 1993. Google Scholar

[7]

M. PetreraA. Pfadler and Y. B. Suris, On integrability of Hirota-Kimura-type discretizations: Experimental study of the discrete Clebsch system, Exp. Math., 18 (2009), 223-247.  doi: 10.1080/10586458.2009.10128900.  Google Scholar

[8]

M. PetreraA. Pfadler and Y. B. Suris, On integrability of Hirota-Kimura type discretizations, Regular Chaotic Dyn., 16 (2011), 245-289.  doi: 10.1134/S1560354711030051.  Google Scholar

[9]

M. Petrera, J. Smirin and Y. B. Suris, Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems, Proc. Royal Soc. A, 475 (2019), 20180761, 13 pp.  Google Scholar

[10]

M. Petrera and Y. B. Suris, On the Hamiltonian structure of Hirota-Kimura discretization of the Euler top, Math. Nachr., 283 (2010), 1654-1663.  doi: 10.1002/mana.200711162.  Google Scholar

show all references

References:
[1]

E. Celledoni, R. I. McLachlan, B. Owren and G. R. W. Quispel, Geometric properties of Kahan's method, J. Phys. A, 46 (2013), 025201, 12 pp. doi: 10.1088/1751-8113/46/2/025201.  Google Scholar

[2]

E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren and G. R. W. Quispel, Integrability properties of Kahan's method, J. Phys. A, 47 (2014), 365202, 20 pp. doi: 10.1088/1751-8113/47/36/365202.  Google Scholar

[3]

E. Celledoni, D. I. McLaren, B. Owren and G. R. W. Quispel, Geometric and integrability properties of Kahan's method: The preservation of certain quadratic integrals, J. Phys. A, 52 (2019), 065201, 9 pp. doi: 10.1088/1751-8121/aafb1e.  Google Scholar

[4]

P. H. van der Kamp, D. I. McLaren and G. R. W. Quispel, Generalised Manin transformations and QRT maps, preprint, arXiv: 1806.05340. Google Scholar

[5]

P. H. van der Kamp, E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren and G. R. W. Quispel, Three classes of quadratic vector fields for which the Kahan discretization is the root of a generalised Manin transformation, J. Phys. A, 52 (2019), 045204. Google Scholar

[6]

W. Kahan, Unconventional Numerical Methods for Trajectory Calculations, Unpublished lecture notes, 1993. Google Scholar

[7]

M. PetreraA. Pfadler and Y. B. Suris, On integrability of Hirota-Kimura-type discretizations: Experimental study of the discrete Clebsch system, Exp. Math., 18 (2009), 223-247.  doi: 10.1080/10586458.2009.10128900.  Google Scholar

[8]

M. PetreraA. Pfadler and Y. B. Suris, On integrability of Hirota-Kimura type discretizations, Regular Chaotic Dyn., 16 (2011), 245-289.  doi: 10.1134/S1560354711030051.  Google Scholar

[9]

M. Petrera, J. Smirin and Y. B. Suris, Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems, Proc. Royal Soc. A, 475 (2019), 20180761, 13 pp.  Google Scholar

[10]

M. Petrera and Y. B. Suris, On the Hamiltonian structure of Hirota-Kimura discretization of the Euler top, Math. Nachr., 283 (2010), 1654-1663.  doi: 10.1002/mana.200711162.  Google Scholar

Figure 1.  The black curve is the conic $ C = 0 $, the red lines represent the reducible conic $ D = 0 $. The finite base points are $ B_1, \ldots, B_4 $. The points $ B_0 $, $ B_5 $ are singular points of the Kanan map $ \Phi_f $, resp. of $ \Phi_f^{-1} $, for the following data: $ \ell(x,y) = 3x-y $, $ H(x,y) = -x^2+(2/5)xy+(1/2)y^2-4x+4y $
[1]

Alicia Cordero, José Martínez Alfaro, Pura Vindel. Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 587-604. doi: 10.3934/dcds.2008.22.587

[2]

Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61

[3]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[4]

Fuzhong Cong, Jialin Hong, Hongtian Li. Quasi-effective stability for nearly integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 67-80. doi: 10.3934/dcdsb.2016.21.67

[5]

Eric Bedford, Kyounghee Kim. Degree growth of matrix inversion: Birational maps of symmetric, cyclic matrices. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 977-1013. doi: 10.3934/dcds.2008.21.977

[6]

Marcel Guardia. Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2829-2859. doi: 10.3934/dcds.2013.33.2829

[7]

Sonja Hohloch, Silvia Sabatini, Daniele Sepe. From compact semi-toric systems to Hamiltonian $S^1$-spaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 247-281. doi: 10.3934/dcds.2015.35.247

[8]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[9]

Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543

[10]

Aristophanes Dimakis, Folkert Müller-Hoissen. Bidifferential graded algebras and integrable systems. Conference Publications, 2009, 2009 (Special) : 208-219. doi: 10.3934/proc.2009.2009.208

[11]

Leo T. Butler. A note on integrable mechanical systems on surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1873-1878. doi: 10.3934/dcds.2014.34.1873

[12]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[13]

Colin Rogers, Tommaso Ruggeri. q-Gaussian integrable Hamiltonian reductions in anisentropic gasdynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2297-2312. doi: 10.3934/dcdsb.2014.19.2297

[14]

Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure & Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433

[15]

Amadeu Delshams, Josep J. Masdemont, Pablo Roldán. Computing the scattering map in the spatial Hill's problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 455-483. doi: 10.3934/dcdsb.2008.10.455

[16]

Carles Simó, Dmitry Treschev. Stability islands in the vicinity of separatrices of near-integrable symplectic maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 681-698. doi: 10.3934/dcdsb.2008.10.681

[17]

Benjamin Couéraud, François Gay-Balmaz. Variational discretization of thermodynamical simple systems on Lie groups. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-28. doi: 10.3934/dcdss.2020064

[18]

Dongfeng Zhang, Junxiang Xu. On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 635-655. doi: 10.3934/dcds.2006.16.635

[19]

Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201

[20]

Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]