# American Institute of Mathematical Sciences

• Previous Article
Study of adaptive symplectic methods for simulating charged particle dynamics
• JCD Home
• This Issue
• Next Article
Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor
December  2019, 6(2): 409-427. doi: 10.3934/jcd.2019021

## Chains of rigid bodies and their numerical simulation by local frame methods

 1 Nordre Krabbedalen 17, 5178 Loddefjord, Norway 2 Matematisk Institutt, Universitetet i Bergen, 5020 Bergen, Norway

* Corresponding author: Antonella Zanna

Received  March 2019 Revised  September 2019 Published  November 2019

We consider the dynamics and numerical simulation of systems of linked rigid bodies (chains). We describe the system using the moving frame method approach of [18]. In this framework, the dynamics of the $j$th body is described in a frame relative to the $(j-1)$th one. Starting from the Lagrangian formulation of the system on ${{\rm{SO}}}(3)^{N}$, the final dynamic formulation is obtained by variational calculus on Lie groups. The obtained system is solved by using unit quaternions to represent rotations and numerical methods preserving quadratic integrals.

Citation: Nicolai Sætran, Antonella Zanna. Chains of rigid bodies and their numerical simulation by local frame methods. Journal of Computational Dynamics, 2019, 6 (2) : 409-427. doi: 10.3934/jcd.2019021
##### References:

show all references

##### References:
System of chained rigid bodies
Single solid pendulum, consisting of a rectangular prism. Left: classical planar motion, described by the angle $\theta$. Right: planar motion, described in 3D by a quaternion and the MFM. At rest (vertical position), the inertial and frame axes are aligned
Numerical solution for the angle $\theta$ for the solid pendulum. The MFM is solved with IMR and stepsize $h = 0.01$ and the exact solution is computed with RK45 imposing machine precision on the tolerances
A simulation of the spinning top, idealized as a rod with a disk (left). Right: position of the center of mass in $[0,30]$ integrated with step size $h = 0.01$. See text for the values of the remaining parameters. The formulation of the equations is identical to that of the single pendulum
4-body pendulum with torsional springs
16-body
Conservation of quaternion-unit length (left) and relative energy error (right) for the 16-body pendulum solved with GLRK scheme with a step length $h = 0.01$
Spring loaded/damped chain. The red vector represents $n$, the unit vector in the direction of the displacement of the spring
64-body pendulum
Comparison of the error in unit length (for quaternions), relative energy error and function evaulations at $T = 10$ for the RK45 and 2-stages GLRK method for a 3D pendulum with 4 links. See text for more details
 Link 1 Link 2 Link 3 Link 4 Relative energy error Function evaluations RK45 5.55e-15 2.47e-14 2.24e-14 2.50e-14 7.22e-14 15794 GL2 2.22e-15 5.55e-16 3.00e-15 1.66e-15 3.00e-13 11334
 Link 1 Link 2 Link 3 Link 4 Relative energy error Function evaluations RK45 5.55e-15 2.47e-14 2.24e-14 2.50e-14 7.22e-14 15794 GL2 2.22e-15 5.55e-16 3.00e-15 1.66e-15 3.00e-13 11334
Computational times for systems with $N$ links. The computational cost grows quadratically with the number of links. See text for more details
 $N$ 4 8 16 32 48 64 Time 719ms$\pm$4.31ms 2.27s$\pm$15.8ms 10.7s$\pm$122ms 45.6$\pm$1.55s 1m43s$\pm$1.94s 3m24s$\pm$5.52s
 $N$ 4 8 16 32 48 64 Time 719ms$\pm$4.31ms 2.27s$\pm$15.8ms 10.7s$\pm$122ms 45.6$\pm$1.55s 1m43s$\pm$1.94s 3m24s$\pm$5.52s
 [1] Dmitriy Chebanov. New class of exact solutions for the equations of motion of a chain of $n$ rigid bodies. Conference Publications, 2013, 2013 (special) : 105-113. doi: 10.3934/proc.2013.2013.105 [2] Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313 [3] Velimir Jurdjevic. Affine-quadratic problems on Lie groups. Mathematical Control & Related Fields, 2013, 3 (3) : 347-374. doi: 10.3934/mcrf.2013.3.347 [4] Shiqing Zhang, Qing Zhou. Nonplanar and noncollision periodic solutions for $N$-body problems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 679-685. doi: 10.3934/dcds.2004.10.679 [5] Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451 [6] Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197-223. doi: 10.3934/jgm.2011.3.197 [7] Joris Vankerschaver, Eva Kanso, Jerrold E. Marsden. The geometry and dynamics of interacting rigid bodies and point vortices. Journal of Geometric Mechanics, 2009, 1 (2) : 223-266. doi: 10.3934/jgm.2009.1.223 [8] Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks & Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597 [9] Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523 [10] Juan J. Morales-Ruiz, Sergi Simon. On the meromorphic non-integrability of some $N$-body problems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1225-1273. doi: 10.3934/dcds.2009.24.1225 [11] André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351 [12] Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517 [13] Sebastián Ferrer, Francisco J. Molero. Andoyer's variables and phases in the free rigid body. Journal of Geometric Mechanics, 2014, 6 (1) : 25-37. doi: 10.3934/jgm.2014.6.25 [14] Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373 [15] Giulio G. Giusteri, Alfredo Marzocchi, Alessandro Musesti. Nonlinear free fall of one-dimensional rigid bodies in hyperviscous fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2145-2157. doi: 10.3934/dcdsb.2014.19.2145 [16] Christopher Cox, Renato Feres. Differential geometry of rigid bodies collisions and non-standard billiards. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6065-6099. doi: 10.3934/dcds.2016065 [17] Juan Carlos Marrero. Hamiltonian mechanical systems on Lie algebroids, unimodularity and preservation of volumes. Journal of Geometric Mechanics, 2010, 2 (3) : 243-263. doi: 10.3934/jgm.2010.2.243 [18] Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961 [19] Víctor Manuel Jiménez Morales, Manuel De León, Marcelo Epstein. Lie groupoids and algebroids applied to the study of uniformity and homogeneity of material bodies. Journal of Geometric Mechanics, 2019, 11 (3) : 301-324. doi: 10.3934/jgm.2019017 [20] Elena Celledoni, Markus Eslitzbichler, Alexander Schmeding. Shape analysis on Lie groups with applications in computer animation. Journal of Geometric Mechanics, 2016, 8 (3) : 273-304. doi: 10.3934/jgm.2016008

Impact Factor:

## Tools

Article outline

Figures and Tables