
-
Previous Article
Linear degree growth in lattice equations
- JCD Home
- This Issue
-
Next Article
Chains of rigid bodies and their numerical simulation by local frame methods
Study of adaptive symplectic methods for simulating charged particle dynamics
1. | LSEC, ICMSEC, Academy of Mathematics and Systems Science, CAS, Beijing 100190, China |
2. | School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
3. | Department of Engineering and Applied Physics, USTC, Hefei, Anhui 230026, China |
4. | Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China |
In plasma simulations, numerical methods with high computational efficiency and long-term stability are needed. In this paper, symplectic methods with adaptive time steps are constructed for simulating the dynamics of charged particles under the electromagnetic field. With specifically designed step size functions, the motion of charged particles confined in a Penning trap under three different magnetic fields is studied, and also the dynamics of runaway electrons in tokamaks is investigated. The numerical experiments are performed to show the efficiency of the new derived adaptive symplectic methods.
References:
[1] |
G. Benettin and P. Sempio,
Adiabatic invariants and trapping of a point charge in a strong nonuniform magnetic field, Nonlinearity, 7 (1994), 281-303.
doi: 10.1088/0951-7715/7/1/014. |
[2] |
M. P. Calvo and J. M. Sanz-Serna,
The Development of variable-step symplectic integrators, with application to the two-body problem, SIAM Journal on Scientific Computing, 14 (1993), 936-952.
doi: 10.1137/0914057. |
[3] |
H. Dreicer,
Electron and ion runaway in a fully ionized gas, Physical Review, 115 (1959), 238-249.
doi: 10.1103/PhysRev.115.238. |
[4] |
B. Gladman, M. Duncan and J. Candy,
Symplectic integrators for long-term integrations in celestial mechanics, Celestial Mechanics & Dynamical Astronomy, 52 (1991), 221-240.
doi: 10.1007/BF00048485. |
[5] |
E. Hairer,
Variable time step integration with symplectic methods, Applied Numerical Mathematics, 25 (1997), 219-227.
doi: 10.1016/S0168-9274(97)00061-5. |
[6] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2006. |
[7] |
E. Hairer and C. Lubich, Long-term analysis of a variational integrator for charged-particle dynamics in a strong magnetic field, preprint, Available from: https://na.uni-tuebingen.de/pub/lubich/papers/adiabatic.pdf. Google Scholar |
[8] |
Y. He, Y. J. Sun, J. Liu and H. Qin,
Volume-preserving algorithms for charged particle dynamics, Journal of Computational Physics, 281 (2015), 135-147.
doi: 10.1016/j.jcp.2014.10.032. |
[9] |
Y. He, Y. J. Sun, R. L. Zhang, Y. L. Wang, J. Liu and H. Qin, High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields, Physics of Plasmas, 23 (2016), 092109.
doi: 10.1063/1.4962677. |
[10] |
Y. He, Z. Q. Zhou, Y. J. Sun, J. Liu and H. Qin,
Explicit $K$-symplectic algorithms for charged particle dynamics, Physics Letters A, 381 (2017), 568-573.
doi: 10.1016/j.physleta.2016.12.031. |
[11] |
W. Z. Huang and B. Leimkuhler,
The adaptive verlet method, SIAM Journal on Scientific Computing, 18 (1997), 239-256.
doi: 10.1137/S1064827595284658. |
[12] |
J. D. Jackson,
From Lorenz to Coulomb and other explicit gauge transformations, American Journal of Physics, 70 (2002), 917-928.
doi: 10.1119/1.1491265. |
[13] |
C. Knapp, A. Kendl, A. Koskela and A. Ostermann, Splitting methods for time integration of trajectories in combined electric and magnetic fields, Physical Review E, 92 (2015), 063310, 13 pp. |
[14] |
M. Kretzschmar,
Single particle motion in a Penning trap: Description in the classical canonical formalism, Physica Scripta, 46 (1992), 544-554.
doi: 10.1088/0031-8949/46/6/011. |
[15] |
P. Langevin, Sur la théorie du mouvement brownien, C. R. Acad. Sci. (Paris), 146 (1908), 530-533. Google Scholar |
[16] |
J. Liu, H. Qin, Y. Wang and et al., Largest particle simulations downgrade the runaway electron risk for Iter, arXiv: 1611.02362. Google Scholar |
[17] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-2682-6. |
[18] |
H. Qin and R. C. Davidson, An exact magnetic-moment invariant of charged-particle gyromotion, Physical Review Letters, 96 (2006), 085003.
doi: 10.1103/PhysRevLett.96.085003. |
[19] |
H. Qin and X. Y. Guan, Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields, Physical Review Letters, 100 (2008), 035006.
doi: 10.1103/PhysRevLett.100.035006. |
[20] |
H. Qin, X. Y. Guan and W. M. Tang, Variational symplectic algorithm for guiding center dynamics and its application in tokamak geometry, Physics of Plasmas, 16 (2009), 042510.
doi: 10.1063/1.3099055. |
[21] |
S. Reich,
Backward error analysis for numerical integrators, SIAM Journal on Numerical Analysis, 36 (1999), 1549-1570.
doi: 10.1137/S0036142997329797. |
[22] |
A. S. Richardson and J. M. Finn,
Symplectic integrators with adaptive time steps, Plasma Physics and Controlled Fusion, 54 (2012), 96-100.
doi: 10.1088/0741-3335/54/1/014004. |
[23] |
C. C. Rodegheri, K. Blaum, H. Kracke, S. Kreim, A. Mooser, W. Quint, S. Ulmer and J. Walz, An experiment for the direct determination of the g-factor of a single proton in a Penning trap, New Journal of Physics, 14 (2012), 063011.
doi: 10.1088/1367-2630/14/6/063011. |
[24] |
J. Schmitt and M. Leok, Adaptive variational integrators, arXiv: 1709.01975. Google Scholar |
[25] |
Y. Y. Shi, Y. J. Sun, Y. He, H. Qin and J. Liu,
Symplectic integrators with adaptive time step applied to runaway electron dynamics, Numerical Algorithms, 81 (2019), 1295-1309.
doi: 10.1007/s11075-018-0636-6. |
[26] |
M. Toggweiler, A. Adelmann, P. Arbenz and J. J. Yang,
A novel adaptive time stepping variant of the Boris–Buneman integrator for the simulation of particle accelerators with space charge, Journal of Computational Physics, 273 (2014), 255-267.
doi: 10.1016/j.jcp.2014.05.008. |
[27] |
Y. L. Wang, J. Liu and H. Qin, Lorentz covariant canonical symplectic algorithms for dynamics of charged particles, Physics of Plasmas, 23 (2016), 122513.
doi: 10.1063/1.4972824. |
[28] |
R. L. Zhang, Y. L. Wang, Y. He, J. Y. Xiao, J. Liu, H. Qin and Y. F. Tang, Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field, Physics of Plasmas, 25 (2018), 022117.
doi: 10.1063/1.5012767. |
[29] |
Z. Q. Zhou, Y. He, Y. J. Sun, J. Liu and H. Qin, Explicit symplectic methods for solving charged particle trajectories, Physics of Plasmas, 24 (2017), 052507.
doi: 10.1063/1.4982743. |
show all references
References:
[1] |
G. Benettin and P. Sempio,
Adiabatic invariants and trapping of a point charge in a strong nonuniform magnetic field, Nonlinearity, 7 (1994), 281-303.
doi: 10.1088/0951-7715/7/1/014. |
[2] |
M. P. Calvo and J. M. Sanz-Serna,
The Development of variable-step symplectic integrators, with application to the two-body problem, SIAM Journal on Scientific Computing, 14 (1993), 936-952.
doi: 10.1137/0914057. |
[3] |
H. Dreicer,
Electron and ion runaway in a fully ionized gas, Physical Review, 115 (1959), 238-249.
doi: 10.1103/PhysRev.115.238. |
[4] |
B. Gladman, M. Duncan and J. Candy,
Symplectic integrators for long-term integrations in celestial mechanics, Celestial Mechanics & Dynamical Astronomy, 52 (1991), 221-240.
doi: 10.1007/BF00048485. |
[5] |
E. Hairer,
Variable time step integration with symplectic methods, Applied Numerical Mathematics, 25 (1997), 219-227.
doi: 10.1016/S0168-9274(97)00061-5. |
[6] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2006. |
[7] |
E. Hairer and C. Lubich, Long-term analysis of a variational integrator for charged-particle dynamics in a strong magnetic field, preprint, Available from: https://na.uni-tuebingen.de/pub/lubich/papers/adiabatic.pdf. Google Scholar |
[8] |
Y. He, Y. J. Sun, J. Liu and H. Qin,
Volume-preserving algorithms for charged particle dynamics, Journal of Computational Physics, 281 (2015), 135-147.
doi: 10.1016/j.jcp.2014.10.032. |
[9] |
Y. He, Y. J. Sun, R. L. Zhang, Y. L. Wang, J. Liu and H. Qin, High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields, Physics of Plasmas, 23 (2016), 092109.
doi: 10.1063/1.4962677. |
[10] |
Y. He, Z. Q. Zhou, Y. J. Sun, J. Liu and H. Qin,
Explicit $K$-symplectic algorithms for charged particle dynamics, Physics Letters A, 381 (2017), 568-573.
doi: 10.1016/j.physleta.2016.12.031. |
[11] |
W. Z. Huang and B. Leimkuhler,
The adaptive verlet method, SIAM Journal on Scientific Computing, 18 (1997), 239-256.
doi: 10.1137/S1064827595284658. |
[12] |
J. D. Jackson,
From Lorenz to Coulomb and other explicit gauge transformations, American Journal of Physics, 70 (2002), 917-928.
doi: 10.1119/1.1491265. |
[13] |
C. Knapp, A. Kendl, A. Koskela and A. Ostermann, Splitting methods for time integration of trajectories in combined electric and magnetic fields, Physical Review E, 92 (2015), 063310, 13 pp. |
[14] |
M. Kretzschmar,
Single particle motion in a Penning trap: Description in the classical canonical formalism, Physica Scripta, 46 (1992), 544-554.
doi: 10.1088/0031-8949/46/6/011. |
[15] |
P. Langevin, Sur la théorie du mouvement brownien, C. R. Acad. Sci. (Paris), 146 (1908), 530-533. Google Scholar |
[16] |
J. Liu, H. Qin, Y. Wang and et al., Largest particle simulations downgrade the runaway electron risk for Iter, arXiv: 1611.02362. Google Scholar |
[17] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-2682-6. |
[18] |
H. Qin and R. C. Davidson, An exact magnetic-moment invariant of charged-particle gyromotion, Physical Review Letters, 96 (2006), 085003.
doi: 10.1103/PhysRevLett.96.085003. |
[19] |
H. Qin and X. Y. Guan, Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields, Physical Review Letters, 100 (2008), 035006.
doi: 10.1103/PhysRevLett.100.035006. |
[20] |
H. Qin, X. Y. Guan and W. M. Tang, Variational symplectic algorithm for guiding center dynamics and its application in tokamak geometry, Physics of Plasmas, 16 (2009), 042510.
doi: 10.1063/1.3099055. |
[21] |
S. Reich,
Backward error analysis for numerical integrators, SIAM Journal on Numerical Analysis, 36 (1999), 1549-1570.
doi: 10.1137/S0036142997329797. |
[22] |
A. S. Richardson and J. M. Finn,
Symplectic integrators with adaptive time steps, Plasma Physics and Controlled Fusion, 54 (2012), 96-100.
doi: 10.1088/0741-3335/54/1/014004. |
[23] |
C. C. Rodegheri, K. Blaum, H. Kracke, S. Kreim, A. Mooser, W. Quint, S. Ulmer and J. Walz, An experiment for the direct determination of the g-factor of a single proton in a Penning trap, New Journal of Physics, 14 (2012), 063011.
doi: 10.1088/1367-2630/14/6/063011. |
[24] |
J. Schmitt and M. Leok, Adaptive variational integrators, arXiv: 1709.01975. Google Scholar |
[25] |
Y. Y. Shi, Y. J. Sun, Y. He, H. Qin and J. Liu,
Symplectic integrators with adaptive time step applied to runaway electron dynamics, Numerical Algorithms, 81 (2019), 1295-1309.
doi: 10.1007/s11075-018-0636-6. |
[26] |
M. Toggweiler, A. Adelmann, P. Arbenz and J. J. Yang,
A novel adaptive time stepping variant of the Boris–Buneman integrator for the simulation of particle accelerators with space charge, Journal of Computational Physics, 273 (2014), 255-267.
doi: 10.1016/j.jcp.2014.05.008. |
[27] |
Y. L. Wang, J. Liu and H. Qin, Lorentz covariant canonical symplectic algorithms for dynamics of charged particles, Physics of Plasmas, 23 (2016), 122513.
doi: 10.1063/1.4972824. |
[28] |
R. L. Zhang, Y. L. Wang, Y. He, J. Y. Xiao, J. Liu, H. Qin and Y. F. Tang, Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field, Physics of Plasmas, 25 (2018), 022117.
doi: 10.1063/1.5012767. |
[29] |
Z. Q. Zhou, Y. He, Y. J. Sun, J. Liu and H. Qin, Explicit symplectic methods for solving charged particle trajectories, Physics of Plasmas, 24 (2017), 052507.
doi: 10.1063/1.4982743. |



















Quantities | Symbols | Non-relativistic | Relativistic | |
Units | Units | |||
Time | ||||
Position | ||||
Velocity | ||||
Momentum | ||||
Canonical Momentum | ||||
Electric field | ||||
Magnetic field | ||||
Vector field | ||||
Scalar field | ||||
Hamiltonian | ||||
Quantities | Symbols | Non-relativistic | Relativistic | |
Units | Units | |||
Time | ||||
Position | ||||
Velocity | ||||
Momentum | ||||
Canonical Momentum | ||||
Electric field | ||||
Magnetic field | ||||
Vector field | ||||
Scalar field | ||||
Hamiltonian | ||||
period | 1st | 70th | 120th | 150th |
fixed | 100 | 451 | 2134 | 5470 |
adaptive | 100 | 100 | 100 | 100 |
period | 1st | 70th | 120th | 150th |
fixed | 100 | 451 | 2134 | 5470 |
adaptive | 100 | 100 | 100 | 100 |
[1] |
Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323 |
[2] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[3] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[4] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[5] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[6] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[7] |
Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021010 |
[8] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
[9] |
Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076 |
[10] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[11] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
[12] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[13] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[14] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[15] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[16] |
Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026 |
[17] |
Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020171 |
[18] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[19] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[20] |
Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]