• Previous Article
    Strange attractors in a predator–prey system with non-monotonic response function and periodic perturbation
  • JCD Home
  • This Issue
  • Next Article
    Study of adaptive symplectic methods for simulating charged particle dynamics
December  2019, 6(2): 449-467. doi: 10.3934/jcd.2019023

Linear degree growth in lattice equations

1. 

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

2. 

School of Mathematics and Statistics, University of New South Wales, Sydney 2052, Australia

* Corresponding author: John A. G. Roberts

To Reinout Quispel on his 66th birthday, in friendship and with gratitude

Received  July 2019 Published  November 2019

We conjecture recurrence relations satisfied by the degrees of some linearizable lattice equations. This helps to prove linear degree growth of these equations. We then use these recurrences to search for lattice equations that have linear growth and hence are linearizable.

Citation: Dinh T. Tran, John A. G. Roberts. Linear degree growth in lattice equations. Journal of Computational Dynamics, 2019, 6 (2) : 449-467. doi: 10.3934/jcd.2019023
References:
[1]

V. E. AdlerA. I. Bobenko and Y. B. Suris, Classification of integrable equations on quad-graphs. The consistency approach, Communications in Mathematical Physics, 233 (2003), 513-543.  doi: 10.1007/s00220-002-0762-8.

[2]

V. É. Adler and S. Y. Startsev, Discrete analogues of the Liouville equation, Theoretical and Mathematical Physics, 121 (1999), 1484-1495.  doi: 10.1007/BF02557219.

[3]

M. P. Belon, Algebraic entropy of birational maps with invariant curves, Lett. Math. Phys., 50 (1999), 79-90.  doi: 10.1023/A:1007634406786.

[4]

J. Blanc and J. Déserti, Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci., 14 (2015), 507-533. 

[5]

P. Galashin and P. Pylyavskyy, Quivers with additive labelings: Classification and algebraic entropy, preprint, arXiv: 1704.05024v2.

[6]

R. N. Garifullin and R. I. Yamilov, Generalized symmetry classification of discrete equations of a class depending on twelve parameters, J. Phys. A: Math. Theor., 45 (2012), 345205, 23 pp. doi: 10.1088/1751-8113/45/34/345205.

[7]

B. Grammaticos, R. G. Halburd, A. Ramani and C.-M. Viallet, How to detect the integrability of discrete systems, J. Phys. A: Math. Theor., 42 (2009), 454002, 30 pp. doi: 10.1088/1751-8113/42/45/454002.

[8]

B. Grammaticos and A. Ramani, Singularity confinement property for the (non-autonomous) Adler-Bobenko-Suris integrable lattice equations, Lett. Math. Phys., 92 (2010), 33-45.  doi: 10.1007/s11005-010-0378-4.

[9]

B. GrammaticosA. Ramani and C.-M. Viallet, Solvable chaos, Physics Letters A, 336 (2005), 152-158.  doi: 10.1016/j.physleta.2005.01.026.

[10]

G. GubbiottiC. Scimiterna and D. Levi, Algebraic entropy, symmetries and linearization of quad equations consistent on the cube, J. Non. Math. Phys., 23 (2016), 507-543.  doi: 10.1080/14029251.2016.1237200.

[11]

J. Hietarinta, A new two-dimensional lattice model that is 'consistent around a cube', J. Phys. A: Math. Gen., 37 (2004), L67–L73. doi: 10.1088/0305-4470/37/6/L01.

[12]

J. Hietarinta and C. Viallet, Searching for integrable lattice maps using factorisation, J. Phys. A: Math. Theor., 40 (2007), 12629-12643.  doi: 10.1088/1751-8113/40/42/S09.

[13]

P. E. Hydon and C.-M. Viallet, Asymmetric integrable quad-graph equations, Applicable Analysis, 89 (2010), 493-506.  doi: 10.1080/00036810903329951.

[14]

P. H. van der Kamp, Growth of degrees of integrable mapping, J. Difference Equ. Appl., 18 (2012), 447-460.  doi: 10.1080/10236198.2010.510137.

[15]

M. Kanki, T. Mase and T. Tokihiro, Algebraic entropy of an extended Hietarinta-Viallet equation, J. Phys. A: Math. Theor., 48 (2015), 355202, 19 pp. doi: 10.1088/1751-8113/48/35/355202.

[16]

D. Levi and C. Scimiterna, Linearizability of nonlinear equations on a quad-graph by a Point, two points and generalized Hopf-Cole transformations, SIGMA Symmetry Integrability Geom. Methods Appl., 7 (2011), Paper 079, 24 pp. doi: 10.3842/SIGMA.2011.079.

[17]

D. Levi and C. Scimiterna, Linearization through symmetries for discrete equations, J. Phys. A: Math. Theor., 46 (2013), 325204, 18 pp. doi: 10.1088/1751-8113/46/32/325204.

[18]

D. Levi and C. Scimiterna, Four points linearizable lattice schemes, JGSP, 31 (2013), 93-104. 

[19]

C. U. Maheswari and R. Sahadevan, On the conservation laws for nonlinear partial difference equations, J. Phys. A: Math. Theor., 44 (2011), 275203, 16 pp. doi: 10.1088/1751-8113/44/27/275201.

[20]

T. Mase, Investigation into the role of the Laurent property in integrability, Journal of Mathematical Physics, 57 (2016), 022703, 21 pp. doi: 10.1063/1.4941370.

[21]

G. R. W. QuispelH. W. CapelV. G. Papageorgiou and F. W. Nijhoff, Integrable mappings derived from soliton equations, Physica A, 173 (1991), 243-266.  doi: 10.1016/0378-4371(91)90258-E.

[22]

A. Ramani, N. Joshi, B. Grammaticos and T. Tamizhmani, Deconstructing an integrable lattice equation, J. Phys. A: Math. Gen., 39 (2006), L145–L149. doi: 10.1088/0305-4470/39/8/L01.

[23]

J. A. G. Roberts and D. T. Tran, Algebraic entropy of (integrable) lattice equations and their reductions, Nonlinearity, 32 (2019), 622-653.  doi: 10.1088/1361-6544/aaecda.

[24]

C. Scimiterna and D. Levi, Classification of discrete equations linearizable by point transformation on a square lattice, Front. Math. China, 8 (2013), 1067-1076.  doi: 10.1007/s11464-013-0280-3.

[25]

T. TakenawaM. EguchiB. GramaticosY. OhtaA. Ramani and J. Satsuma, The space of initial conditions for linearizable mappings, Nonlinearity, 16 (2003), 457-477.  doi: 10.1088/0951-7715/16/2/306.

[26]

S. TremblayB. Grammaticos and A. Ramani, Integrable lattice equations and their growth properties, Phys. Lett. A, 278 (2001), 319-324.  doi: 10.1016/S0375-9601(00)00806-9.

[27]

C. Viallet, Algebraic entropy for lattice equations, preprint, arXiv: 0609043v2.

[28]

C. M. Viallet, Integrable lattice maps: $Q_V$, a rational version of $Q_4$, Glasg. Math. J., 51 (2009), 157-163.  doi: 10.1017/S0017089508004874.

[29]

C.-M. Viallet, On the algebraic structure of rational discrete dynamical systems, J. Phys. A: Math. Theor., 48 (2015), 16FT01, 21 pp. doi: 10.1088/1751-8113/48/16/16FT01.

show all references

References:
[1]

V. E. AdlerA. I. Bobenko and Y. B. Suris, Classification of integrable equations on quad-graphs. The consistency approach, Communications in Mathematical Physics, 233 (2003), 513-543.  doi: 10.1007/s00220-002-0762-8.

[2]

V. É. Adler and S. Y. Startsev, Discrete analogues of the Liouville equation, Theoretical and Mathematical Physics, 121 (1999), 1484-1495.  doi: 10.1007/BF02557219.

[3]

M. P. Belon, Algebraic entropy of birational maps with invariant curves, Lett. Math. Phys., 50 (1999), 79-90.  doi: 10.1023/A:1007634406786.

[4]

J. Blanc and J. Déserti, Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci., 14 (2015), 507-533. 

[5]

P. Galashin and P. Pylyavskyy, Quivers with additive labelings: Classification and algebraic entropy, preprint, arXiv: 1704.05024v2.

[6]

R. N. Garifullin and R. I. Yamilov, Generalized symmetry classification of discrete equations of a class depending on twelve parameters, J. Phys. A: Math. Theor., 45 (2012), 345205, 23 pp. doi: 10.1088/1751-8113/45/34/345205.

[7]

B. Grammaticos, R. G. Halburd, A. Ramani and C.-M. Viallet, How to detect the integrability of discrete systems, J. Phys. A: Math. Theor., 42 (2009), 454002, 30 pp. doi: 10.1088/1751-8113/42/45/454002.

[8]

B. Grammaticos and A. Ramani, Singularity confinement property for the (non-autonomous) Adler-Bobenko-Suris integrable lattice equations, Lett. Math. Phys., 92 (2010), 33-45.  doi: 10.1007/s11005-010-0378-4.

[9]

B. GrammaticosA. Ramani and C.-M. Viallet, Solvable chaos, Physics Letters A, 336 (2005), 152-158.  doi: 10.1016/j.physleta.2005.01.026.

[10]

G. GubbiottiC. Scimiterna and D. Levi, Algebraic entropy, symmetries and linearization of quad equations consistent on the cube, J. Non. Math. Phys., 23 (2016), 507-543.  doi: 10.1080/14029251.2016.1237200.

[11]

J. Hietarinta, A new two-dimensional lattice model that is 'consistent around a cube', J. Phys. A: Math. Gen., 37 (2004), L67–L73. doi: 10.1088/0305-4470/37/6/L01.

[12]

J. Hietarinta and C. Viallet, Searching for integrable lattice maps using factorisation, J. Phys. A: Math. Theor., 40 (2007), 12629-12643.  doi: 10.1088/1751-8113/40/42/S09.

[13]

P. E. Hydon and C.-M. Viallet, Asymmetric integrable quad-graph equations, Applicable Analysis, 89 (2010), 493-506.  doi: 10.1080/00036810903329951.

[14]

P. H. van der Kamp, Growth of degrees of integrable mapping, J. Difference Equ. Appl., 18 (2012), 447-460.  doi: 10.1080/10236198.2010.510137.

[15]

M. Kanki, T. Mase and T. Tokihiro, Algebraic entropy of an extended Hietarinta-Viallet equation, J. Phys. A: Math. Theor., 48 (2015), 355202, 19 pp. doi: 10.1088/1751-8113/48/35/355202.

[16]

D. Levi and C. Scimiterna, Linearizability of nonlinear equations on a quad-graph by a Point, two points and generalized Hopf-Cole transformations, SIGMA Symmetry Integrability Geom. Methods Appl., 7 (2011), Paper 079, 24 pp. doi: 10.3842/SIGMA.2011.079.

[17]

D. Levi and C. Scimiterna, Linearization through symmetries for discrete equations, J. Phys. A: Math. Theor., 46 (2013), 325204, 18 pp. doi: 10.1088/1751-8113/46/32/325204.

[18]

D. Levi and C. Scimiterna, Four points linearizable lattice schemes, JGSP, 31 (2013), 93-104. 

[19]

C. U. Maheswari and R. Sahadevan, On the conservation laws for nonlinear partial difference equations, J. Phys. A: Math. Theor., 44 (2011), 275203, 16 pp. doi: 10.1088/1751-8113/44/27/275201.

[20]

T. Mase, Investigation into the role of the Laurent property in integrability, Journal of Mathematical Physics, 57 (2016), 022703, 21 pp. doi: 10.1063/1.4941370.

[21]

G. R. W. QuispelH. W. CapelV. G. Papageorgiou and F. W. Nijhoff, Integrable mappings derived from soliton equations, Physica A, 173 (1991), 243-266.  doi: 10.1016/0378-4371(91)90258-E.

[22]

A. Ramani, N. Joshi, B. Grammaticos and T. Tamizhmani, Deconstructing an integrable lattice equation, J. Phys. A: Math. Gen., 39 (2006), L145–L149. doi: 10.1088/0305-4470/39/8/L01.

[23]

J. A. G. Roberts and D. T. Tran, Algebraic entropy of (integrable) lattice equations and their reductions, Nonlinearity, 32 (2019), 622-653.  doi: 10.1088/1361-6544/aaecda.

[24]

C. Scimiterna and D. Levi, Classification of discrete equations linearizable by point transformation on a square lattice, Front. Math. China, 8 (2013), 1067-1076.  doi: 10.1007/s11464-013-0280-3.

[25]

T. TakenawaM. EguchiB. GramaticosY. OhtaA. Ramani and J. Satsuma, The space of initial conditions for linearizable mappings, Nonlinearity, 16 (2003), 457-477.  doi: 10.1088/0951-7715/16/2/306.

[26]

S. TremblayB. Grammaticos and A. Ramani, Integrable lattice equations and their growth properties, Phys. Lett. A, 278 (2001), 319-324.  doi: 10.1016/S0375-9601(00)00806-9.

[27]

C. Viallet, Algebraic entropy for lattice equations, preprint, arXiv: 0609043v2.

[28]

C. M. Viallet, Integrable lattice maps: $Q_V$, a rational version of $Q_4$, Glasg. Math. J., 51 (2009), 157-163.  doi: 10.1017/S0017089508004874.

[29]

C.-M. Viallet, On the algebraic structure of rational discrete dynamical systems, J. Phys. A: Math. Theor., 48 (2015), 16FT01, 21 pp. doi: 10.1088/1751-8113/48/16/16FT01.

Figure 2.  Illustration of the degree recurrence relation (10)
Figure 3.  Equations equivalent to equation (10)
Figure 1.  Initial values $ I_1 $ (left) and $ I_2 $ (right) for lattice equations
[1]

Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differential-algebraic equations. Conference Publications, 2011, 2011 (Special) : 991-1000. doi: 10.3934/proc.2011.2011.991

[2]

Yaping Wu, Xiuxia Xing, Qixiao Ye. Stability of travelling waves with algebraic decay for $n$-degree Fisher-type equations. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 47-66. doi: 10.3934/dcds.2006.16.47

[3]

Jean-François Biasse. Subexponential time relations in the class group of large degree number fields. Advances in Mathematics of Communications, 2014, 8 (4) : 407-425. doi: 10.3934/amc.2014.8.407

[4]

Min Qian, Jian-Sheng Xie. Entropy formula for endomorphisms: Relations between entropy, exponents and dimension. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 367-392. doi: 10.3934/dcds.2008.21.367

[5]

Boris S. Kruglikov and Vladimir S. Matveev. Vanishing of the entropy pseudonorm for certain integrable systems. Electronic Research Announcements, 2006, 12: 19-28.

[6]

Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 43-56. doi: 10.3934/jmd.2017003

[7]

Sihong Su. A new construction of rotation symmetric bent functions with maximal algebraic degree. Advances in Mathematics of Communications, 2019, 13 (2) : 253-265. doi: 10.3934/amc.2019017

[8]

Wenying Zhang, Zhaohui Xing, Keqin Feng. A construction of bent functions with optimal algebraic degree and large symmetric group. Advances in Mathematics of Communications, 2020, 14 (1) : 23-33. doi: 10.3934/amc.2020003

[9]

Antonio Algaba, Natalia Fuentes, Cristóbal García, Manuel Reyes. Non-formally integrable centers admitting an algebraic inverse integrating factor. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 967-988. doi: 10.3934/dcds.2018041

[10]

Wen-Xiu Ma. Wronskian solutions to integrable equations. Conference Publications, 2009, 2009 (Special) : 506-515. doi: 10.3934/proc.2009.2009.506

[11]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic and Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

[12]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[13]

Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433

[14]

Yi-Chiuan Chen. Bernoulli shift for second order recurrence relations near the anti-integrable limit. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 587-598. doi: 10.3934/dcdsb.2005.5.587

[15]

Pieter C. Allaart. An algebraic approach to entropy plateaus in non-integer base expansions. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6507-6522. doi: 10.3934/dcds.2019282

[16]

Eric Bedford, Kyounghee Kim. Degree growth of matrix inversion: Birational maps of symmetric, cyclic matrices. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 977-1013. doi: 10.3934/dcds.2008.21.977

[17]

Daniele Bartoli, Leo Storme. On the functional codes arising from the intersections of algebraic hypersurfaces of small degree with a non-singular quadric. Advances in Mathematics of Communications, 2014, 8 (3) : 271-280. doi: 10.3934/amc.2014.8.271

[18]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[19]

Frank Blume. Realizing subexponential entropy growth rates by cutting and stacking. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3435-3459. doi: 10.3934/dcdsb.2015.20.3435

[20]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577

 Impact Factor: 

Metrics

  • PDF downloads (218)
  • HTML views (318)
  • Cited by (0)

Other articles
by authors

[Back to Top]