December  2019, 6(2): 469-483. doi: 10.3934/jcd.2019024

Strange attractors in a predator–prey system with non-monotonic response function and periodic perturbation

Analysis and Geometry Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no 10 Bandung, Indonesia

Received  February 2019 Revised  July 2019 Published  November 2019

A system of ordinary differential equations of a predator–prey type, depending on nine parameters, is studied. We have included in this model a nonmonotonic response function and time periodic perturbation. Using numerical continuation software, we have detected three codimension two bifurcations for the unperturbed system, namely cusp, Bogdanov-Takens and Bautin bifurcations. Furthermore, we concentrate on two regions in the parameter space, the region where the Bogdanov-Takens and the region where Bautin bifurcations occur. As we turn on the time perturbation, we find strange attractors in the neighborhood of invariant tori of the unperturbed system.

Citation: Johan Matheus Tuwankotta, Eric Harjanto. Strange attractors in a predator–prey system with non-monotonic response function and periodic perturbation. Journal of Computational Dynamics, 2019, 6 (2) : 469-483. doi: 10.3934/jcd.2019024
References:
[1]

F. K. Balagaddé, H. Song, J. Ozaki, C. H. Collins, M. Barnet, F. H. Arnold, S. R. Quake and L. You, A synthetic escherichia coli predator-prey ecosystem, Molecular Systems Biology, 4 (2008), 187, 1–8. Google Scholar

[2]

A. A. Berryman, The orgins and evolution of predator-prey theory, Ecology, 73 (1992), 1530-1535.  doi: 10.2307/1940005.  Google Scholar

[3]

G. E. Briggs and J. B. S. Haldane, A note on the kinetics of enzyme action, Biochemical Journal, 19 (1925), 338-339.  doi: 10.1042/bj0190338.  Google Scholar

[4]

H. W. BroerK. SalehV. Naudot and R. Roussarie, Dynamics of a predator-prey model with non-monotonic response function, Discrete & Continuous Dynamical Systems-A, 18 (2007), 221-251.  doi: 10.3934/dcds.2007.18.221.  Google Scholar

[5]

Z. H. Cai, Q. Wang and G. Q. Liu, Modeling the natural capital investment on tourism industry using a predator-prey model, in Advances in Computer Science and its Applications, (2014), 751–756. doi: 10.1007/978-3-642-41674-3_107.  Google Scholar

[6]

E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, X. Wang and et al., Continuation and bifurcation software for ordinary differential equations (with homcont), AUTO97, Concordia University, Canada. Google Scholar

[7]

A. Fenton and S. E. Perkins, Applying predator-prey theory to modelling immune-mediated, within-host interspecific parasite interactions, Parasitology, 137 (2010), 1027-1038.  doi: 10.1017/S0031182009991788.  Google Scholar

[8]

R. M. Goodwin, A growth cycle, Essays in Economic Dynamics, (1967), 165–170. doi: 10.1007/978-1-349-05504-3_12.  Google Scholar

[9]

C. Grimme and J. Lepping, Integrating niching into the predator-prey model using epsilon-constraints, in Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, ACM, (2011), 109–110. doi: 10.1145/2001858.2001920.  Google Scholar

[10]

E. Harjanto and J.M. Tuwankotta, Vanishing two folds without cusp bifurcation in a predator-prey type of systems with group defense mechanism and seasonal variation (in bahasa indonesia), Prosiding Konferensi Nasional Matematika, Indonesian Mathematical Society, 17 (2014), 767-772.   Google Scholar

[11]

E. Harjanto and J. M. Tuwankotta, Bifurcation of periodic solution in a Predator-Prey type of systems with non-monotonic response function and periodic perturbation, International Journal of Non-Linear Mechanics, 85 (2016), 188-196.  doi: 10.1016/j.ijnonlinmec.2016.06.011.  Google Scholar

[12]

C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, The Canadian Entomologist, 91 (1959), 293-320.  doi: 10.4039/Ent91293-5.  Google Scholar

[13]

C. S. Holling, Some characteristics of simple types of predation and parasitism, The Canadian Entomologist, 91 (1959), 385-398.  doi: 10.4039/Ent91385-7.  Google Scholar

[14]

Y. X. Huang and O. Diekmann, Predator migration in response to prey density: What are the consequences?, Journal of Mathematical Biology, 43 (2001), 561-581.  doi: 10.1007/s002850100107.  Google Scholar

[15]

I. Koren and G. Feingold, Aerosol-cloud-precipitation system as a predator-prey problem, Proceedings of the National Academy of Sciences, 108 (2011), 12227-12232.  doi: 10.1073/pnas.1101777108.  Google Scholar

[16]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4757-2421-9.  Google Scholar

[17]

S. Nagano and Y. Maeda, Phase transitions in predator-prey systems, Physical Review E, 85 (2012), 011915. doi: 10.1103/PhysRevE.85.011915.  Google Scholar

[18]

S. RinaldiS. Muratori and Y. Kuznetsov, Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities, Bulletin of mathematical Biology, 55 (1993), 15-35.   Google Scholar

[19]

A. Sharma and N. Singh, Object detection in image using predator-prey optimization, Signal & Image Processing, 2 (2011), 205-221.  doi: 10.5121/sipij.2011.2115.  Google Scholar

[20]

J. M. Tuwankotta, Chaos in a coupled oscillators system with widely spaced frequencies and energy-preserving non-linearity, International Journal of Non-Linear Mechanics, 41 (2006), 180-191.  doi: 10.1016/j.ijnonlinmec.2005.02.007.  Google Scholar

[21]

T. H. ZhangY. P. XingH. Zang and M. A. Han, Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality, Nonlinear Dynamics, 78 (2014), 265-277.  doi: 10.1007/s11071-014-1438-6.  Google Scholar

[22]

T. H. Zhang and H. Zang, Delay-induced turing instability in reaction-diffusion equations, Physical Review E, 90 (2014), 052908. doi: 10.1103/PhysRevE.90.052908.  Google Scholar

[23]

H. P. ZhuS. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics, 63 (2002), 636-682.  doi: 10.1137/S0036139901397285.  Google Scholar

show all references

References:
[1]

F. K. Balagaddé, H. Song, J. Ozaki, C. H. Collins, M. Barnet, F. H. Arnold, S. R. Quake and L. You, A synthetic escherichia coli predator-prey ecosystem, Molecular Systems Biology, 4 (2008), 187, 1–8. Google Scholar

[2]

A. A. Berryman, The orgins and evolution of predator-prey theory, Ecology, 73 (1992), 1530-1535.  doi: 10.2307/1940005.  Google Scholar

[3]

G. E. Briggs and J. B. S. Haldane, A note on the kinetics of enzyme action, Biochemical Journal, 19 (1925), 338-339.  doi: 10.1042/bj0190338.  Google Scholar

[4]

H. W. BroerK. SalehV. Naudot and R. Roussarie, Dynamics of a predator-prey model with non-monotonic response function, Discrete & Continuous Dynamical Systems-A, 18 (2007), 221-251.  doi: 10.3934/dcds.2007.18.221.  Google Scholar

[5]

Z. H. Cai, Q. Wang and G. Q. Liu, Modeling the natural capital investment on tourism industry using a predator-prey model, in Advances in Computer Science and its Applications, (2014), 751–756. doi: 10.1007/978-3-642-41674-3_107.  Google Scholar

[6]

E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, X. Wang and et al., Continuation and bifurcation software for ordinary differential equations (with homcont), AUTO97, Concordia University, Canada. Google Scholar

[7]

A. Fenton and S. E. Perkins, Applying predator-prey theory to modelling immune-mediated, within-host interspecific parasite interactions, Parasitology, 137 (2010), 1027-1038.  doi: 10.1017/S0031182009991788.  Google Scholar

[8]

R. M. Goodwin, A growth cycle, Essays in Economic Dynamics, (1967), 165–170. doi: 10.1007/978-1-349-05504-3_12.  Google Scholar

[9]

C. Grimme and J. Lepping, Integrating niching into the predator-prey model using epsilon-constraints, in Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, ACM, (2011), 109–110. doi: 10.1145/2001858.2001920.  Google Scholar

[10]

E. Harjanto and J.M. Tuwankotta, Vanishing two folds without cusp bifurcation in a predator-prey type of systems with group defense mechanism and seasonal variation (in bahasa indonesia), Prosiding Konferensi Nasional Matematika, Indonesian Mathematical Society, 17 (2014), 767-772.   Google Scholar

[11]

E. Harjanto and J. M. Tuwankotta, Bifurcation of periodic solution in a Predator-Prey type of systems with non-monotonic response function and periodic perturbation, International Journal of Non-Linear Mechanics, 85 (2016), 188-196.  doi: 10.1016/j.ijnonlinmec.2016.06.011.  Google Scholar

[12]

C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, The Canadian Entomologist, 91 (1959), 293-320.  doi: 10.4039/Ent91293-5.  Google Scholar

[13]

C. S. Holling, Some characteristics of simple types of predation and parasitism, The Canadian Entomologist, 91 (1959), 385-398.  doi: 10.4039/Ent91385-7.  Google Scholar

[14]

Y. X. Huang and O. Diekmann, Predator migration in response to prey density: What are the consequences?, Journal of Mathematical Biology, 43 (2001), 561-581.  doi: 10.1007/s002850100107.  Google Scholar

[15]

I. Koren and G. Feingold, Aerosol-cloud-precipitation system as a predator-prey problem, Proceedings of the National Academy of Sciences, 108 (2011), 12227-12232.  doi: 10.1073/pnas.1101777108.  Google Scholar

[16]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4757-2421-9.  Google Scholar

[17]

S. Nagano and Y. Maeda, Phase transitions in predator-prey systems, Physical Review E, 85 (2012), 011915. doi: 10.1103/PhysRevE.85.011915.  Google Scholar

[18]

S. RinaldiS. Muratori and Y. Kuznetsov, Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities, Bulletin of mathematical Biology, 55 (1993), 15-35.   Google Scholar

[19]

A. Sharma and N. Singh, Object detection in image using predator-prey optimization, Signal & Image Processing, 2 (2011), 205-221.  doi: 10.5121/sipij.2011.2115.  Google Scholar

[20]

J. M. Tuwankotta, Chaos in a coupled oscillators system with widely spaced frequencies and energy-preserving non-linearity, International Journal of Non-Linear Mechanics, 41 (2006), 180-191.  doi: 10.1016/j.ijnonlinmec.2005.02.007.  Google Scholar

[21]

T. H. ZhangY. P. XingH. Zang and M. A. Han, Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality, Nonlinear Dynamics, 78 (2014), 265-277.  doi: 10.1007/s11071-014-1438-6.  Google Scholar

[22]

T. H. Zhang and H. Zang, Delay-induced turing instability in reaction-diffusion equations, Physical Review E, 90 (2014), 052908. doi: 10.1103/PhysRevE.90.052908.  Google Scholar

[23]

H. P. ZhuS. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics, 63 (2002), 636-682.  doi: 10.1137/S0036139901397285.  Google Scholar

Figure 1.  Two parameter bifurcation diagram ($ \beta-\alpha $) of system (1) with initial condition $ \delta = 1.1 $, $ \lambda_0 = 0.01 $, $ \mu = 0.1 $, $ \alpha = 0.002 $, $ \beta = 0.25 $, $ \omega = 1 $, $ x = 1.816 $, and $ y = 1.434 $, while $ \varepsilon = 0 $. The curve labelled by $ \textsf{F}_1 $, and $ \textsf{F}_2 $ are the fold curves. The curves $ \textsf{H}_1 $ and $ \textsf{H}_3 $ are the Hopf bifurcation curves. The curve $ \textsf{H}_1 $ and $ \textsf{H}_3 $ are joint together at the point $ \textsf{H}_2 $. The curve plotted with a dashed line (labelled by $ \textsf{Hom} $) is the curve of Homoclinic bifurcations while the $ \textsf{FLC} $ curve is the fold of limit cycle bifurcations curve. The $ \textsf{Hom} $ curve coincides with some part of the $ \textsf{F}_2 $-curve which is labelled by $ \textsf{F}'_2 $
Figure 2.  In this figure we have plotted the magnification of the region $ \textsf{B} $ of Figure 1. We have indicated five regions on that diagram, i.e. $ \textsf{B}_1 $, $ \textsf{B}_2 $, $ \textsf{B}_3 $, $ \textsf{B}_4 $, and $ \textsf{B}_5 $. The diagrams on the second and third rows are the phase portraits in each of these regions. The four phase portraits for $ (\alpha, \beta) $ in $ \textsf{B}_1 $, $ \textsf{B}_2 $, $ \textsf{B}_5 $, and $ \textsf{B}_3 $, correspond to the Bogdanov-Takens bifurcations. The transition from phase portrait when $ (\beta, \alpha) \in \textsf{B}_3 $ to $ (\beta, \alpha) \in \textsf{B}_4 $, or when $ (\beta, \alpha) \in \textsf{B}_5 $ to $ (\beta, \alpha) \in \textsf{B}_4 $ corresponds to fold bifurcation of equilibrium of system (1) for $ \varepsilon = 0 $; the latter with the creation of orbit homoclinic to the degenerate equilibrium
Figure 3.  We have plotted the magnification of the region $ \textsf{A} $ of Figure 1. We have indicated seven regions on that diagram, i.e. $ \textsf{A}_j $, $ j = 1, 2, \ldots, 7 $. These regions are separated from each other by the bifurcation curves: $ \textsf{F}_2 $ — where a fold bifurcation occurs—, $ \textsf{H}_{1,3} $ — where a Hopf bifurcation occurs—, $ \textsf{Hom} $ — where a homoclinic bifurcation occurs —, and $ \textsf{FLC} $ — where a fold bifurcation of limit cycles occurs
Figure 4.  We have plotted seven diagrams which correspond to the phase portraits of system (1), for parameter value of $ (\beta, \alpha) $ in region: $ \textsf{A}_j $, $ j = 1,2, \ldots, 7 $ and $ \varepsilon = 0 $. The topological changes of these phase portraits when the parameter moves from $ \textsf{A}_1 $, to $ \textsf{A}_2 $, to $ \textsf{A}_3 $, and back, are in agreement with the scenario of Bautin (or degenerate Hopf) bifurcation
Figure 5.  A plot of a negative time attractor in the strobocospic map (4) (also known as the Poincaré section) showing evidence of the existence of a strange repeller (a strange negative-time attractor). The value of $ \varepsilon = 0.07 $, $ \delta = 1.1 $, $ \lambda_0 = 0.01 $, $ \mu = 0.1 $, $ \omega = 1 $, $ \alpha = 0.007 $, and $ \beta = 0.08 $. On the left diagram we have plotted the cross section of the strange repeller while on the right we have plotted the magnification of a part of the cross section, indicated by the box $ \textsf{K} $
Figure 6.  A comparison between the phase portrait of the stroboscopic map of System (2) for $ \varepsilon = 0 $ (diagrams in the first row) and $ \varepsilon = 0.07 $ (diagrams in the second column). The value of $ (\beta,\alpha) = (0.07,0.005) $ (for the diagrams in the most left), $ (\beta,\alpha) = (0.08,0.005) $ (for the diagrams in middle column), and $ (\beta,\alpha) = (0.09,0.005) $ (for the diagrams in the most right column)
Figure 7.  The chaotic transient behaviour in the neighborhood of the fold of limit cycles bifurcation
Table 1.  In this table, a positive Lyapunov exponent and Kaplan-Yorke dimension of some of the attractors for various values of $ \beta $ and $ \alpha = 0.005 $ are listed
Type of attractor $ \beta $ Positive exp. Kaplan-Yorke dimension
Negative $ 0.08 $ $ 0.718621 \cdot 10^{-6} $ $ 1.0000772161 $
Negative $ 0.0505 $ $ 0.378245 \cdot 10^{-6} $ $ 1.0000802951 $
Positive $ 0.08 $ $ 0.506676 \cdot 10^{-6} $ $ 1.0000015131 $
Positive $ 0.10448 $ $ 0.292264 \cdot 10^{-6} $ $ 1.0000759023 $
Type of attractor $ \beta $ Positive exp. Kaplan-Yorke dimension
Negative $ 0.08 $ $ 0.718621 \cdot 10^{-6} $ $ 1.0000772161 $
Negative $ 0.0505 $ $ 0.378245 \cdot 10^{-6} $ $ 1.0000802951 $
Positive $ 0.08 $ $ 0.506676 \cdot 10^{-6} $ $ 1.0000015131 $
Positive $ 0.10448 $ $ 0.292264 \cdot 10^{-6} $ $ 1.0000759023 $
[1]

Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701

[2]

Yang Lu, Xia Wang, Shengqiang Liu. A non-autonomous predator-prey model with infected prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3817-3836. doi: 10.3934/dcdsb.2018082

[3]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 167-188. doi: 10.3934/mbe.2014.11.167

[4]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[5]

Sampurna Sengupta, Pritha Das, Debasis Mukherjee. Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3275-3296. doi: 10.3934/dcdsb.2018244

[6]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[7]

José A. Langa, James C. Robinson, Aníbal Rodríguez-Bernal, A. Suárez, A. Vidal-López. Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 483-497. doi: 10.3934/dcds.2007.18.483

[8]

V. V. Chepyzhov, M. I. Vishik, W. L. Wendland. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 27-38. doi: 10.3934/dcds.2005.12.27

[9]

T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265

[10]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[11]

Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229

[12]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[13]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[14]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[15]

Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291

[16]

Eduardo Hernández, Donal O'Regan. $C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 241-260. doi: 10.3934/dcds.2011.29.241

[17]

Iacopo P. Longo, Sylvia Novo, Rafael Obaya. Topologies of continuity for Carathéodory delay differential equations with applications in non-autonomous dynamics. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5491-5520. doi: 10.3934/dcds.2019224

[18]

Rafael Obaya, Ana M. Sanz. Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3947-3970. doi: 10.3934/dcdsb.2018338

[19]

Lucile Mégret, Jacques Demongeot. Gevrey solutions of singularly perturbed differential equations, an extension to the non-autonomous case. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020183

[20]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

 Impact Factor: 

Metrics

  • PDF downloads (25)
  • HTML views (25)
  • Cited by (0)

Other articles
by authors

[Back to Top]