# American Institute of Mathematical Sciences

December  2019, 6(2): 485-511. doi: 10.3934/jcd.2019025

## Using Lie group integrators to solve two and higher dimensional variational problems with symmetry

 SMSAS, University of Kent, Canterbury, CT2 7FS, UK

* Corresponding author: Elizabeth L. Mansfield

Received  March 2019 Revised  September 2019 Published  November 2019

The theory of moving frames has been used successfully to solve one dimensional (1D) variational problems invariant under a Lie group symmetry. In the one dimensional case, Noether's laws give first integrals of the Euler–Lagrange equations. In higher dimensional problems, the conservation laws do not enable the exact integration of the Euler–Lagrange system. In this paper we use the theory of moving frames to help solve, numerically, some higher dimensional variational problems, which are invariant under a Lie group action. In order to find a solution to the variational problem, we need first to solve the Euler Lagrange equations for the relevant differential invariants, and then solve a system of linear, first order, compatible, coupled partial differential equations for a moving frame, evolving on the Lie group. We demonstrate that Lie group integrators may be used in this context. We show first that the Magnus expansions on which one dimensional Lie group integrators are based, may be taken sequentially in a well defined way, at least to order 5; that is, the exact result is independent of the order of integration. We then show that efficient implementations of these integrators give a numerical solution of the equations for the frame, which is independent of the order of integration, to high order, in a range of examples. Our running example is a variational problem invariant under a linear action of $SU(2)$. We then consider variational problems for evolving curves which are invariant under the projective action of $SL(2)$ and finally the standard affine action of $SE(2)$.

Citation: Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485-511. doi: 10.3934/jcd.2019025
##### References:

show all references

##### References:
The two different paths $\gamma_1$, $\gamma_2$
2-Norm of the difference between the two moving frames
The imaginary component of $u$
Plots of solutions to the variational problem defined by (49), computed integrating the two different ways; the plots look identical to the naked eye
Absolute value of the difference between the two surfaces in Figure 4
Plots of solutions to the variational problem defined by (53), computed integrating the two different ways; the plots look identical to the naked eye
Absolute value of the difference between the two surfaces in Figure 6
2–norm of the difference between the two moving frames
A plot of the minimiser as an evolving curve, $(t, x(s,t), u(s,t))$
Table of Coefficients
 Order Monomial Coefficient 2 hk R 3 $h^2k$ $\frac{1}{2} \partial_x R$ 4 $h^3k$ $\frac{1}{6} \partial_x^2 R -\frac{1}{12} {\rm ad}_{ \mathcal{Q}^x}( \partial_x R) + \frac{1}{12} {\rm ad}_{ \partial_x \mathcal{Q}^x}(R)$ $h^2k^2$ $\frac{1}{4} \partial_x \partial_y R -\frac{1}{6} {\rm ad}_{{\rm ad}_{ \mathcal{Q}^x}( \mathcal{Q}^y)}(R) - \frac{1}{12} {\rm ad}_{ \mathcal{Q}^y}({\rm ad}_{ \mathcal{Q}^x}(R))$ 5 $h^4k$ $\frac{1}{24} \partial_x^3 R - \frac{1}{24} {\rm ad}_{ \mathcal{Q}^x}( \partial_x^2 R) + \frac{1}{24} {\rm ad}_{{ \partial_x^2 \mathcal{Q}^x}}(R)$ $h^3k^2$ $\frac{1}{12} \partial_x^2 \partial_y R - \frac{1}{24} {\rm ad}_{ \mathcal{Q}^x} ( \partial_x \partial_y R) -\frac{1}{24} {\rm ad}_{ \partial_x \mathcal{Q}^x} ( \partial_y R)$ $- \frac{1}{24} {\rm ad}_{ \mathcal{Q}^x} ({\rm ad}_{ \mathcal{Q}^y} ( \partial_x R)) -\frac{1}{12} {\rm ad}_R( \partial_x R) + \frac{1}{2} {\rm ad}_{ \partial_x \mathcal{Q}^y} ( \partial_x R)$ $+ \frac{1}{6} {\rm ad}_{ \partial_x^2 \mathcal{Q}^y} (R) - \frac{1}{24} {\rm ad}_{ \mathcal{Q}^y}( {\rm ad}_{ \partial_y \mathcal{Q}^x}(R)) -\frac{1}{24}{\rm ad}_{ \partial_x \mathcal{Q}^y}({\rm ad}_{ \mathcal{Q}^x}(R))$ $+ \frac{1}{8}{\rm ad}_{\left[ \partial_x \mathcal{Q}^y, \mathcal{Q}^x\right]} (R)+\frac{1}{8}{\rm ad}_{\left[ \mathcal{Q}^y, \partial_x \mathcal{Q}^x\right]}(R)$
 Order Monomial Coefficient 2 hk R 3 $h^2k$ $\frac{1}{2} \partial_x R$ 4 $h^3k$ $\frac{1}{6} \partial_x^2 R -\frac{1}{12} {\rm ad}_{ \mathcal{Q}^x}( \partial_x R) + \frac{1}{12} {\rm ad}_{ \partial_x \mathcal{Q}^x}(R)$ $h^2k^2$ $\frac{1}{4} \partial_x \partial_y R -\frac{1}{6} {\rm ad}_{{\rm ad}_{ \mathcal{Q}^x}( \mathcal{Q}^y)}(R) - \frac{1}{12} {\rm ad}_{ \mathcal{Q}^y}({\rm ad}_{ \mathcal{Q}^x}(R))$ 5 $h^4k$ $\frac{1}{24} \partial_x^3 R - \frac{1}{24} {\rm ad}_{ \mathcal{Q}^x}( \partial_x^2 R) + \frac{1}{24} {\rm ad}_{{ \partial_x^2 \mathcal{Q}^x}}(R)$ $h^3k^2$ $\frac{1}{12} \partial_x^2 \partial_y R - \frac{1}{24} {\rm ad}_{ \mathcal{Q}^x} ( \partial_x \partial_y R) -\frac{1}{24} {\rm ad}_{ \partial_x \mathcal{Q}^x} ( \partial_y R)$ $- \frac{1}{24} {\rm ad}_{ \mathcal{Q}^x} ({\rm ad}_{ \mathcal{Q}^y} ( \partial_x R)) -\frac{1}{12} {\rm ad}_R( \partial_x R) + \frac{1}{2} {\rm ad}_{ \partial_x \mathcal{Q}^y} ( \partial_x R)$ $+ \frac{1}{6} {\rm ad}_{ \partial_x^2 \mathcal{Q}^y} (R) - \frac{1}{24} {\rm ad}_{ \mathcal{Q}^y}( {\rm ad}_{ \partial_y \mathcal{Q}^x}(R)) -\frac{1}{24}{\rm ad}_{ \partial_x \mathcal{Q}^y}({\rm ad}_{ \mathcal{Q}^x}(R))$ $+ \frac{1}{8}{\rm ad}_{\left[ \partial_x \mathcal{Q}^y, \mathcal{Q}^x\right]} (R)+\frac{1}{8}{\rm ad}_{\left[ \mathcal{Q}^y, \partial_x \mathcal{Q}^x\right]}(R)$
 [1] Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141-148. doi: 10.3934/jgm.2020007 [2] Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517 [3] André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351 [4] Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10. [5] Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014 [6] Benjamin Couéraud, François Gay-Balmaz. Variational discretization of thermodynamical simple systems on Lie groups. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1075-1102. doi: 10.3934/dcdss.2020064 [7] Velimir Jurdjevic. Affine-quadratic problems on Lie groups. Mathematical Control & Related Fields, 2013, 3 (3) : 347-374. doi: 10.3934/mcrf.2013.3.347 [8] Elena Celledoni, Markus Eslitzbichler, Alexander Schmeding. Shape analysis on Lie groups with applications in computer animation. Journal of Geometric Mechanics, 2016, 8 (3) : 273-304. doi: 10.3934/jgm.2016008 [9] M. F. Newman and Michael Vaughan-Lee. Some Lie rings associated with Burnside groups. Electronic Research Announcements, 1998, 4: 1-3. [10] Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323 [11] Gregory S. Chirikjian. Information-theoretic inequalities on unimodular Lie groups. Journal of Geometric Mechanics, 2010, 2 (2) : 119-158. doi: 10.3934/jgm.2010.2.119 [12] Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144 [13] Nikolaos Karaliolios. Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups. Journal of Modern Dynamics, 2017, 11: 125-142. doi: 10.3934/jmd.2017006 [14] Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167 [15] Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977 [16] Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495 [17] Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Nonlinear differential equations: Lie symmetries, conservation laws and other approaches of solving. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : i-ii. doi: 10.3934/dcdss.2020415 [18] María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331 [19] Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312 [20] Luca Capogna. Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications. Electronic Research Announcements, 1996, 2: 60-68.

Impact Factor:

## Tools

Article outline

Figures and Tables