[1]
|
M. I. Ahmad, U. Baur and P. Benner, Implicit Volterra series interpolation for model reduction of bilinear systems, J. Comput. Appl. Math., 316 (2017), 15-28.
doi: 10.1016/j.cam.2016.09.048.
|
[2]
|
S. Al-Baiyat and M. Bettayeb, A new model reduction scheme for k-power bilinear systems, Proc. 32nd IEEE Conf. Decis. Control, 32 (1993), 22-27.
doi: 10.1109/CDC.1993.325196.
|
[3]
|
I. Andrianov and P. Saalfrank, Theoretical study of vibration–phonon coupling of H adsorbed on a Si(100) surface, J. Chem. Phys., 124 (2006).
doi: 10.1063/1.2161191.
|
[4]
|
M. Annunziato and A. Borzi, A Fokker–Planck control framework for multidimensional stochastic processes, J. Comput. Appl. Math., 237 (2013), 487-507.
doi: 10.1016/j.cam.2012.06.019.
|
[5]
|
A. Antoulas, Approximation of Large-Scale Dynamical Systems, Advances in Design Control, 6, SIAM, Philadelphia, 2005.
doi: 10.1137/1.9780898718713.
|
[6]
|
Z. Bai and D. Skoogh, A projection method for model reduction of bilinear dynamical systems, Linear Algebra Appl., 415 (2006), 406-425.
doi: 10.1016/j.laa.2005.04.032.
|
[7]
|
U. Baur, P. Benner and L. Feng, Model order reduction for linear and nonlinear systems: A system-theoretic perspective, Arch. Comput. Methods Eng., 21 (2014), 331-358.
doi: 10.1007/s11831-014-9111-2.
|
[8]
|
S. Becker and C. Hartmann, Infinite-dimensional bilinear and stochastic balanced truncation with explicit error bounds, Math. Control Signals Systems, 31 (2019), 1-37.
doi: 10.1007/s00498-019-0234-8.
|
[9]
|
P. Benner and T. Breiten, Interpolation-based $\mathcal{H}_2$-model reduction of bilinear control systems, SIAM J. Matrix Anal. Appl., 33 (2012), 859-885.
doi: 10.1137/110836742.
|
[10]
|
P. Benner and T. Damm, Lyapunov equations, energy functionals, and model order reduction, SIAM J. Control Optim., 49 (2011), 686-711.
doi: 10.1137/09075041X.
|
[11]
|
P. Benner, T. Damm, M. Redmann and Y. R. Rodriguez Cruz, Positive operators and stable truncation, Linear Algebra Appl., 498 (2016), 74-87.
doi: 10.1016/j.laa.2014.12.005.
|
[12]
|
P. Benner, T. Damm and Y. R. Rodriguez Cruz, Dual pairs of generalized Lyapunov inequalities and balanced truncation of stochastic linear systems, IEEE Trans. Automat. Control, 62 (2017), 782-791.
doi: 10.1109/TAC.2016.2572881.
|
[13]
|
P. Benner, S. Gugercin and K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), 483-531.
doi: 10.1137/130932715.
|
[14]
|
P. Benner, P. Kürschner and J. Saak, Efficient handling of complex shift parameters in the low-rank cholesky factor ADI method, Numer. Algorithms, 62 (2013), 225-251.
doi: 10.1007/s11075-012-9569-7.
|
[15]
|
N. Berglund, Kramers' law: Validity, derivations and generalisations, Markov Process. Related Fields, 19 (2013), 459-490.
|
[16]
|
C. Boess, A. Lawless, N. Nichols and A. Bunse-Gerstner, State estimation using model order reduction for unstable systems, Computers & Fluids, 46 (2011), 155-160.
doi: 10.1016/j.compfluid.2010.11.033.
|
[17]
|
T. Breiten and T. Damm, Krylov subspace methods for model order reduction of bilinear control systems, Systems Control Lett., 59 (2010), 443-450.
doi: 10.1016/j.sysconle.2010.06.003.
|
[18]
|
T. Breiten, K. Kunisch and L. Pfeiffer, Control strategies for the Fokker-Planck equation, ESAIM Control Optim. Calc. Var., 24 (2018), 741-763.
doi: 10.1051/cocv/2017046.
|
[19]
|
H.-P. Breuer, W. Huber and F. Petruccione, Stochastic wave-function method versus density matrix: A numerical comparison, Comput. Phys. Comm., 104 (1997), 46-58.
doi: 10.1016/S0010-4655(97)00050-7.
|
[20]
|
H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, New York, 2002.
doi: 10.1093/acprof:oso/9780199213900.001.0001.
|
[21]
|
M. Condon and R. Ivanov, Empirical balanced truncation of nonlinear systems, J. Nonlinear Sci., 14 (2004), 405-414.
doi: 10.1007/s00332-004-0617-5.
|
[22]
|
M. Condon and R. Ivanov, Nonlinear systems – Algebraic Gramians and model reduction, COMPEL, 24 (2005), 202-219.
doi: 10.1108/03321640510571147.
|
[23]
|
T. Damm, Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations, Numer. Linear Algebra Appl., 15 (2008), 853-871.
doi: 10.1002/nla.603.
|
[24]
|
N. de Souza, Pulling on single molecules, Nature Meth., 9 (2012), 873-877.
doi: 10.1038/nmeth.2149.
|
[25]
|
G. Flagg, Interpolation Methods for the Model Reduction of Bilinear Systems, Ph.D thesis, Virginia Tech, 2012.
|
[26]
|
G. Flagg and S. Gugercin, Multipoint volterra series interpolation and $\mathcal{H}_2$ optimal model reduction of bilinear systems, SIAM J. Matrix Anal. Appl., 36 (2015), 549-579.
doi: 10.1137/130947830.
|
[27]
|
V. Gaitsgory, Suboptimization of singularly perturbed control systems, SIAM J. Control Optim., 30 (1992), 1228-1249.
doi: 10.1137/0330065.
|
[28]
|
G. Grammel, Averaging of singularly perturbed systems, Nonlinear Anal., 28 (1997), 1851-1865.
doi: 10.1016/S0362-546X(95)00243-O.
|
[29]
|
W. Gray and J. P. Mesko, Observability functions for linear and nonlinear systems, Systems Control Lett., 38 (1999), 99-113.
doi: 10.1016/S0167-6911(99)00051-1.
|
[30]
|
S. Gugercin, A. Antoulas and S. Beattie, $\mathcal{H}_2$ model reduction for large-scale dynamical systems, SIAM J. Matrix Anal. Appl., 30 (2008), 609-638.
doi: 10.1137/060666123.
|
[31]
|
C. Hartmann, B. Schäfer-Bung and A. Zueva, Balanced averaging of bilinear systems with applications to stochastic control, SIAM J. Control Optim., 51 (2013), 2356-2378.
doi: 10.1137/100796844.
|
[32]
|
C. Hartmann and C. Schütte, Efficient rare event simulation by optimal nonequilibrium forcing, J. Stat. Mech. Theor. Exp., 2012 (2012).
doi: 10.1088/1742-5468/2012/11/P11004.
|
[33]
|
C. Hartmann, V. Vulcanov and C. Schütte, Balanced truncation of linear second-order systems: A Hamiltonian approach, Multiscale Model. Simul., 8 (2010), 1348-1367.
doi: 10.1137/080732717.
|
[34]
|
G. Hummer and A. Szabo, Free energy profiles from single-molecule pulling experiments, Proc. Natl. Acad. Sci. USA, 107 (2010), 21441-21446.
doi: 10.1073/pnas.1015661107.
|
[35]
|
A. Isidori, Direct construction of minimal bilinear realizations from nonlinear input-output maps, IEEE Trans. Automatic Control, 18 (1973), 626-631.
doi: 10.1109/tac.1973.1100424.
|
[36]
|
S. Lall, J. Marsden and S. Glavaški, A subspace approach to balanced truncation for model reduction of nonlinear control systems, Internat. J. Robust Nonlinear Control, 12 (2002), 519-535.
doi: 10.1002/rnc.657.
|
[37]
|
J. C. Latorre, P. Metzner, C. Hartmann and C. Schütte, A structure-preserving numerical discretization of reversible diffusions, Commun. Math. Sci., 9 (2011), 1051-1072.
doi: 10.4310/CMS.2011.v9.n4.a6.
|
[38]
|
A. S. Lawless, N. K. Nichols, C. Boess and A. Bunse-Gerstner, Using model reduction methods within incremental four-dimensional variational data assimilation, Monthly Weather Review, 136 (2008), 1511-1522.
doi: 10.1175/2007MWR2103.1.
|
[39]
|
C. Le Bris, Y. Maday and G. Turinici, Towards efficient numerical approaches for quantum control, in Quantum Control: Mathematical and Cumerical Cchallenges, CRM Proc. Lecture Notes, 33, Amer. Math. Soc., Providence, RI, 2003.
|
[40]
|
T. Lelivre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics, Acta Numer., 25 (2016), 681-880.
doi: 10.1017/S0962492916000039.
|
[41]
|
J.-R. Li and J. White, Low-rank solution of Lyapunov equations, SIAM Rev., 46 (2004), 693-713.
doi: 10.1137/S0036144504443389.
|
[42]
|
Y. Lin, L. Bao and Y. Wei, Order reduction of bilinear MIMO dynamical systems using new block Krylov subspaces, Comput. Math. Appl., 58 (2009), 1093-1102.
doi: 10.1016/j.camwa.2009.07.039.
|
[43]
|
G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys., 48 (1976), 119-130.
doi: 10.1007/BF01608499.
|
[44]
|
L. Meier and D. Luenberger, Approximation of linear constant systems, IEEE Transactions on Automatic Control, 12 (1967), 585-588.
doi: 10.1109/TAC.1967.1098680.
|
[45]
|
W. E. Moerner, Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy (Nobel Lecture), Rev. Mod. Phys., 87 (2015), 1183-1212.
doi: 10.1002/anie.201501949.
|
[46]
|
M. Mohammadi, Analysis of discretization schemes for Fokker-Planck equations and related optimality systems, Ph.D thesis, Universität Würzburg, 2015.
|
[47]
|
B. Moore, Principal component analysis in linear system: Controllability, observability and model reduction, IEEE Trans. Automat. Control, 26 (1981), 17-32.
doi: 10.1109/TAC.1981.1102568.
|
[48]
|
R. O'Malley, Singular Perturbation Methods for Ordinary Differential Equations, Applied Mathematical Sciences, 89, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0977-5.
|
[49]
|
M. Petreczky, R. Wisniewski and J. Leth, Moment matching for bilinear systems with nice selections, IFAC-PapersOnLine, 49 (2016), 838-843.
doi: 10.1016/j.ifacol.2016.10.270.
|
[50]
|
J. Phillips, Projection-based approaches for model reduction of weakly nonlinear, time-varying systems, IEEE T. Comput. Aided. D., 22 (2003), 171-187.
doi: 10.1109/TCAD.2002.806605.
|
[51]
|
M. Redmann and P. Benner, Singular perturbation approximation for linear systems with Lévy noise, Stoch. Dyn., 18 (2018).
doi: 10.1142/S0219493718500338.
|
[52]
|
L. Rey-Bellet, Open classical systems, in Open Quantum Systems II: The Markovian Approach, Lecture Notes in Math., 1881, Springer, Berlin, 2006, 41–78.
doi: 10.1007/3-540-33966-3_2.
|
[53]
|
W. Rugh, Nonlinear System Theory, Johns Hopkins University Press, Baltimore, MD, 1981.
|
[54]
|
B. Schäfer-Bung, C. Hartmann, B. Schmidt and C. Schütte, Dimension reduction by balanced truncation: Application to light-induced control of open quantum systems, J Chem. Phys., 135 (2011).
doi: 10.1063/1.3605243.
|
[55]
|
B. Schmidt and C. Hartmann, Wavepacket: A MATLAB package for numerical quantum dynamics. Ⅱ: Open quantum systems and optimal control, Comput. Phys. Commun., 228 (2018), 229-244.
doi: 10.1016/j.cpc.2018.02.022.
|
[56]
|
B. Schmidt and U. Lorenz, Wavepacket: A MATLAB package for numerical quantum dynamics. Ⅰ: Closed quantum systems and discrete variable representations, Comput. Phys. Commun., 213 (2017), 223-234.
doi: 10.1016/j.cpc.2016.12.007.
|
[57]
|
T. Siu and M. Schetzen, Convergence of Volterra series representation and BIBO stability of bilinear systems, Internat. J. Systems Sci., 22 (1991), 2679-2684.
doi: 10.1080/00207729108910824.
|
[58]
|
A. K. Tiwari, K. B. Møller and N. E. Henriksen, Selective bond breakage within the HOD molecule using optimized femtosecond ultraviolet laser pulses, Phys. Rev. A, 78 (2008).
doi: 10.1103/PhysRevA.78.065402.
|
[59]
|
A. Vigodner, Limits of singularly perturbed control problems with statistical dynamics of fast motions, SIAM J. Control Optim., 35 (1997), 1-28.
doi: 10.1137/S0363012994264207.
|
[60]
|
E. Wachspress, Iterative solution of the Lyapunov matrix equation, Appl. Math. Lett., 1 (1988), 87-90.
doi: 10.1016/0893-9659(88)90183-8.
|
[61]
|
F. Watbled, On singular perturbations for differential inclusions on the infinite interval, J. Math. Anal. Appl., 310 (2005), 362–378.
doi: 10.1016/j.jmaa.2005.01.067.
|
[62]
|
U. Weiss, Quantum Dissipative Systems, Series in Modern Condensed Matter Physics, 10, World Scientific, Singapore, 1999.
doi: 10.1142/9789812817877.
|
[63]
|
D. Wilson, Optimum solution of model-reduction problem, Proceedings of the Institution of Electrical Engineers, 117 (1970), 1161-1165.
doi: 10.1049/piee.1970.0227.
|
[64]
|
A. Zewail, Femtochemistry: Chemical reaction dynamics and their control, in Advances in Chemical Physics: Chemical Reactions and their Control on the Femtosecond Time Scale, 101, John Wiley & Sons, Hoboken, NJ, 1997,103–108.
doi: 10.1002/9780470141601.ch1.
|
[65]
|
L. Zhang and J. Lam, On $H_2$ model reduction of bilinear systems, Automatica J. IFAC, 38 (2002), 205-216.
doi: 10.1016/S0005-1098(01)00204-7.
|
[66]
|
W. Zhang, H. Wang, C. Hartmann, M. Weber and C. Schütte, Applications of the cross-entropy method to importance sampling and optimal control of diffusions, SIAM J. Sci. Comput., 36 (2014), A2654–A2672.
doi: 10.1137/14096493X.
|