[1]
|
A. C. Alvarez, P. G. Bedrikovetsky, G. Hime, A. O. Marchesin, D. Marchesin and J. R. Rodrigues, A fast inverse solver for the filtration function for flow of water with particles in porous media, Inverse Problems, 22 (2006), 69-88.
doi: 10.1088/0266-5611/22/1/005.
|
[2]
|
A. C. Alvarez, G. Hime, J. D. Silva and D. Marchesin, Analytic regularization of an inverse filtration problem in porous media, Inverse Problems, 29 (2013), 025006, 20 pp.
doi: 10.1088/0266-5611/29/2/025006.
|
[3]
|
V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, vol. 250, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4612-1037-5.
|
[4]
|
P. Bedrikovetsky, D. Marchesin, G. Hime, A. Alvarez, A. O. Marchesin, A. G. Siqueira, A. L. S. Souza, F. S. Shecaira and J. R. Rodrigues, Porous Media Deposition Damage from Injection of Water with Particles, in ECMOR Ⅷ-8th European Conference on the Mathematics of Oil Recovery, 2002.
doi: 10.3997/2214-4609.201405931.
|
[5]
|
C. F. Borges, A full-Newton approach to separable nonlinear least squares problems and its application to discrete least squares rational approximation, Electron. Trans. Numer. Anal., 35 (2009), 57-68.
|
[6]
|
S. L. Brunton, J. L. Proctor and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA, 113 (2016), 3932-3937.
doi: 10.1073/pnas.1517384113.
|
[7]
|
R. Burckel, A history of complex dynamics from Schroeder to Fatou and Julia (Daniel S. Alexander), SIAM Review, 36 (1994), 663-664.
|
[8]
|
T. Curtright, X. Jin and C. Zachos, Approximate solutions of functional equations, J. Phys. A, 44 (2011), 405205, 12 pp.
doi: 10.1088/1751-8113/44/40/405205.
|
[9]
|
T. Curtright and C. Zachos, Evolution profiles and functional equations, J. Phys. A, 42 (2009), 485208, 16 pp.
doi: 10.1088/1751-8113/42/48/485208.
|
[10]
|
T. L. Curtright and C. K. Zachos, Chaotic maps, hamiltonian flows and holographic methods, J. Phys. A, 43 (2010), 445101, 15 pp.
doi: 10.1088/1751-8113/43/44/445101.
|
[11]
|
T. L. Curtright and C. K. Zachos, Renormalization group functional equations, Physical Review D, 83 (2011), 065019.
doi: 10.1103/PhysRevD.83.065019.
|
[12]
|
M. L. Heard, A change of variables for functional differential equations, J. Differential Equations, 18 (1975), 1-10.
doi: 10.1016/0022-0396(75)90076-5.
|
[13]
|
B. Hofmann, A. Leitão and J. P. Zubelli, New Trends in Parameter Identification for Mathematical Models, Springer, 2018.
doi: 10.1007/978-3-319-70824-9.
|
[14]
|
J. B. Keller, I. Kay and J. Shmoys, Determination of the potential from scattering data, Phys. Rev., 102 (1956), 557-559.
doi: 10.1103/PhysRev.102.557.
|
[15]
|
M. Kuczma, Functional Equations in a Single Variable, Monografie Matematyczne, Tom 46 Państwowe Wydawnictwo Naukowe, Warsaw, 1968.
|
[16]
|
M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, vol. 32, Cambridge University Press, Cambridge, 1990.
doi: 10.1017/CBO9781139086639.
|
[17]
|
H. Kunze and S. Vasiliadis, Using the collage method to solve ODEs inverse problems with multiple data sets, Nonlinear Anal., 71 (2009), e1298–e1306.
doi: 10.1016/j.na.2009.01.167.
|
[18]
|
H. E. Kunze and E. R. Vrscay, Solving inverse problems for ordinary differential equations using the Picard contraction mapping, Inverse Problems, 15 (1999), 745-770.
doi: 10.1088/0266-5611/15/3/308.
|
[19]
|
H. Kunze, D. La Torre and E. R. Vrscay, Solving inverse problems for DEs using the collage theorem and entropy maximization, Appl. Math. Lett., 25 (2012), 2306-2311.
doi: 10.1016/j.aml.2012.06.021.
|
[20]
|
F. Lu, D. Xu and G. Wen, Estimation of initial conditions and parameters of a chaotic evolution process from a short time series, Chaos: An Interdisciplinary Journal of Nonlinear Science, 14 (2004), 1050-1055.
doi: 10.1063/1.1811548.
|
[21]
|
W. H. Miller, WKB solution of inversion problems for potential scattering, J. Chem. Phys., 51 (1969), 3631-3638.
doi: 10.1063/1.1672572.
|
[22]
|
T. G. Müller and J. Timmer, Parameter identification techniques for partial differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 2052-2060.
doi: 10.1142/S0218127404010424.
|
[23]
|
T. G. Müller and J. Timmer, Fitting parameters in partial differential equations from partially observed noisy data, Phys. D, 171 (2002), 1-7.
doi: 10.1016/S0167-2789(02)00546-8.
|
[24]
|
Y. Nakatsukasa, O. Sète and L. N. Trefethen, The AAA algorithm for rational approximation, SIAM J. Sci. Comput., 40 (2018), A1494–A1522.
doi: 10.1137/16M1106122.
|
[25]
|
E. B. Nelson, Nonlinear Regression Methods for Estimation, Technical report, Air Force Inst. of Tech. Wright-Patterson, 2005.
|
[26]
|
M. Pachter and O. R. Reynolds, Identification of a discrete-time dynamical system, IEEE Transactions on Aerospace and Electronic Systems, 36 (2000), 212-225.
doi: 10.1109/7.826323.
|
[27]
|
M. Peifer and J. Timmer, Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting, IET Systems Biology, 1 (2007), 78-88.
doi: 10.1049/iet-syb:20060067.
|
[28]
|
S. S. Roy, Dynamic System Identification Using Adaptive Algorithm, Scholars Press, 2017.
|
[29]
|
C. G. Small, Functional Equations and How to Solve Them, Springer, 2007.
doi: 10.1007/978-0-387-48901-8.
|
[30]
|
W.-B. Zhang, Discrete Dynamical Systems, Bifurcations and Chaos in Economics, Elsevier, 2006.
|