[1]
|
U. M. Ascher, S. J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797-823.
doi: 10.1137/0732037.
|
[2]
|
D. Avitabile, S. Coombes and P. M. Lima, danieleavitabile/neural-field-with-dendrites: Ancillary codes to "Numerical Investigation of a Neural Field Model Including Dendritic Processing", 2020.
doi: 10.5281/zenodo.3731920.
|
[3]
|
I. Bojak, T. F. Oostendorp, A. T. Reid and R. Kötter, Connecting mean field models of neural activity to EEG and fMRI data, Brain Topography, 23 (2010), 139-149.
doi: 10.1007/s10548-010-0140-3.
|
[4]
|
P. C. Bressloff, New mechanism for neural pattern formation, Phys. Rev. Lett., 76 (1996), 4644-4647.
doi: 10.1103/PhysRevLett.76.4644.
|
[5]
|
P. C. Bressloff and S. Coombes, Physics of the extended neuron, International Journal of Modern Physics B, 11 (1997), 2343-2392.
doi: 10.1142/S0217979297001209.
|
[6]
|
S. Coombes, Waves, bumps, and patterns in neural field theories, Biol. Cybernet., 93 (2005), 91-108.
doi: 10.1007/s00422-005-0574-y.
|
[7]
|
S. Coombes, P. Beim Graben, R. Potthast and J. Wright, Neural Fields: Theory and Applications, Springer, 2014.
|
[8]
|
S. Coombes, H. Schmidt and I. Bojak, Interface dynamics in planar neural field models, J. Math. Neurosci., 2 (2012), 9, 27 pp.
doi: 10.1186/2190-8567-2-9.
|
[9]
|
S. M. Crook, G. B. Ermentrout, M. C. Vanier and J. M. Bower, The role of axonal delay in the synchronization of networks of coupled cortical oscillators, Journal of Computational Neuroscience, 4 (1997), 161-172.
|
[10]
|
S. Heitmann, M. J. Aburn and M. Breakspear, The Brain dynamics toolbox for matlab, Neurocomputing, 315 (2018), 82-88.
doi: 10.1016/j.neucom.2018.06.026.
|
[11]
|
A. Hutt and N. Rougier, Numerical simulation scheme of one-and two dimensional neural fields involving space-dependent delays, Neural Fields, Springer, Heidelberg, (2014), 175–185.
|
[12]
|
P. M. Lima and E. Buckwar, Numerical solution of the neural field equation in the two-dimensional case, SIAM J. Sci. Comput., 37 (2015), B962–B979.
doi: 10.1137/15M1022562.
|
[13]
|
E. J. Nichols and A. Hutt, Neural field simulator: Two-dimensional spatio-temporal dynamics involving finite transmission speed, Front. Neuroinform., 9 (2015), 25.
doi: 10.3389/fninf.2015.00025.
|
[14]
|
P. L. Nunez, Neocortical dynamics and human EEG rhythms, Physics Today, 49 (1996), 57.
doi: 10.1063/1.2807585.
|
[15]
|
K. H. Pettersen and G. T. Einevoll, Amplitude variability and extracellular low-pass filtering of neuronal spikes, Biophysical Journal, 94 (2008), 784-802.
doi: 10.1529/biophysj.107.111179.
|
[16]
|
J. Rankin, D. Avitabile, J. Baladron, G. Faye and D. J. B. Lloyd, Continuation of localized coherent structures in nonlocal neural field equations, SIAM J. Sci. Comput., 36 (2014), B70–B93.
doi: 10.1137/130918721.
|
[17]
|
J. Ross, M. Margetts, I. Bojak, R. Nicks, D. Avitabile and S. Coombes, A brain-wave equation incorporating axo-dendritic connectivity, Physical Review E, 101 (2020), 022411.
|
[18]
|
P. Sanz-Leon, P. A. Robinson, S. A. Knock, P. M. Drysdale, R. G. Abeysuriya, F. K. Fung, C. J. Rennie and X. Zhao, NFTsim: Theory and simulation of multiscale neural field dynamics, PLoS Computational Biology, 14 (2018), e1006387.
doi: 10.1371/journal.pcbi.1006387.
|
[19]
|
L. N. Trefethen, Spectral Methods in MATLAB, Software, Environments, and Tools, SIAM, vol. 10, 2000.
doi: 10.1137/1.9780898719598.
|
[20]
|
J. M. Varah, A lower bound for the smallest singular value of a matrix, Linear Algebra and Applications, 11 (1975), 3-5.
doi: 10.1016/0024-3795(75)90112-3.
|
[21]
|
S. Visser, R. Nicks, O. Faugeras and S. Coombes, Standing and travelling waves in a spherical brain model: The Nunez model revisited, Physica D, 349 (2017), 27-45.
doi: 10.1016/j.physd.2017.02.017.
|