December  2020, 7(2): 291-312. doi: 10.3934/jcd.2020012

An energy dissipative semi-discrete finite-difference method on staggered meshes for the 3D compressible isothermal Navier–Stokes–Cahn–Hilliard equations

1. 

Keldysh Institute of Applied Mathematics, Miusskaya sqr., 4, 125047 Moscow, Russia

2. 

National Research University Higher School of Economics, Pokrovskii bd. 11, 109028 Moscow, Russia, Keldysh Institute of Applied Mathematics, Miusskaya sqr., 4, 125047 Moscow, Russia

* Corresponding author

Received  September 2019 Published  July 2020

Fund Project: The study was supported by the Russian Science Foundation, project no. 19-11-00169

We consider the initial-boundary value problem for the 3D regularized compressible isothermal Navier–Stokes–Cahn–Hilliard equations describing flows of a two-component two-phase mixture taking into account capillary effects. We construct a new numerical semi-discrete finite-difference method using staggered meshes for the main unknown functions. The method allows one to improve qualitatively the computational flow dynamics by eliminating the so-called parasitic currents and keeping the component concentration inside the physically reasonable range $ (0,1) $. This is achieved, first, by discretizing the non-divergent potential form of terms responsible for the capillary effects and establishing the dissipativity of the discrete full energy. Second, a logarithmic (or the Flory–Huggins potential) form for the non-convex bulk free energy is used. The regularization of equations is accomplished to increase essentially the time step of the explicit discretization in time. We include 3D numerical results for two typical problems that confirm the theoretical predictions.

Citation: Vladislav Balashov, Alexander Zlotnik. An energy dissipative semi-discrete finite-difference method on staggered meshes for the 3D compressible isothermal Navier–Stokes–Cahn–Hilliard equations. Journal of Computational Dynamics, 2020, 7 (2) : 291-312. doi: 10.3934/jcd.2020012
References:
[1]

M. O. Abu-Al-SaudS. Popinet and H. A. Tchelepi, A conservative and well-balanced surface tension model, J. Comput. Phys., 371 (2018), 896-913.  doi: 10.1016/j.jcp.2018.02.022.  Google Scholar

[2]

D. M. AndersonG. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30 (1998), 139-165.  doi: 10.1146/annurev.fluid.30.1.139.  Google Scholar

[3]

A. Arakawa and V. R. Lamb, Computational design of the basic dynamical processes of the UCLA general circulation model, Methods Comput. Phys., 17 (1977), 173-265.   Google Scholar

[4]

V. A. Balashov and E. B. Savenkov, Quasi-hydrodynamic model of multiphase fluid flows taking into account phase interaction, J. Appl. Mech. Tech. Phys., 59 (2018), 434-444.  doi: 10.1134/S0021894418030069.  Google Scholar

[5]

V. A. Balashov and E. B. Savenkov, Thermodynamically consistent spatial discretization of the one-dimensional regularized system of the Navier–Stokes–Cahn–Hilliard equations, J. Comput. Appl. Math., 372 (2020), 112743, 16 pp. doi: 10.1016/j.cam.2020.112743.  Google Scholar

[6]

V. BalashovE. Savenkov and A. Zlotnik, Numerical method for 3D two-component isothermal compressible flows with application to digital rock physics, Russian J. Numer. Anal. Math. Modelling, 34 (2019), 1-13.  doi: 10.1515/rnam-2019-0001.  Google Scholar

[7]

V. Balashov and A. Zlotnik, An energy dissipative spatial discretization for the regularized compressible Navier–Stokes–Cahn–Hilliard system of equations, Math. Model. Anal., 25 (2020), 110-129.  doi: 10.3846/mma.2020.10577.  Google Scholar

[8]

V. BalashovA. Zlotnik and E. Savenkov, Analysis of a regularized model for the isothermal two-component mixture with the diffuse interface, Russian J. Numer. Anal. Math. Modelling, 32 (2017), 347-358.  doi: 10.1515/rnam-2017-0033.  Google Scholar

[9] M. J. Blunt, Multiphase Flow in Permeable Media: A Pore-Scale Perspective, Cambridge University Press, 2017.  doi: 10.1017/9781316145098.  Google Scholar
[10]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[11]

B. N. Chetverushkin, Kinetic Schemes and Quasi-Gasdynamic System of Equations, CIMNE, Barcelona, 2008. Google Scholar

[12]

K. Connington and T. Lee, A review of spurious currents in the lattice Boltzmann method for multiphase flows, J. Mech. Sci. Technology, 26 (2012), 3857-3863.  doi: 10.1007/s12206-012-1011-5.  Google Scholar

[13]

M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.  doi: 10.1007/BF01385847.  Google Scholar

[14]

A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 24 (1995), 1491-1514.  doi: 10.1016/0362-546X(94)00205-V.  Google Scholar

[15]

A. Yu. Demianov, O. Yu. Dinariev and N. V. Evseev, Introduction to the Density Functional Method in Hydrodynamics, Fizmatlit, Moscow, 2014. Google Scholar

[16]

T. G. Elizarova, Quasi-Gas Dynamic Equations, Computational Fluid and Solid Mechanics. Springer, Dordrecht, 2009. doi: 10.1007/978-3-642-00292-2.  Google Scholar

[17]

F. FrankC. LiuF. O. Alpak and B. Riviere, A finite volume/discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging, Comput. Geosci., 22 (2018), 543-563.  doi: 10.1007/s10596-017-9709-1.  Google Scholar

[18]

Y. GongJ. Zhao and Q. Wang, An energy stable algorithm for a quasi-incompressible hydrodynamic phase-field model of viscous fluid mixtures with variable densities and viscosities, Comput. Phys. Comm., 219 (2017), 20-34.  doi: 10.1016/j.cpc.2017.05.002.  Google Scholar

[19]

L. GoudenègeD. Martin and G. Vial, High order finite element calculations for the Cahn-Hilliard equation, J. Sci. Comput., 52 (2012), 294-321.  doi: 10.1007/s10915-011-9546-7.  Google Scholar

[20]

J.-L. Guermond and B. Popov, Viscous regularization of the Euler equations and entropy principles, SIAM J. Appl. Math., 74 (2014), 284-305.  doi: 10.1137/120903312.  Google Scholar

[21]

Z. GuoP. LinJ. Lowengrub and S. M. Wise, Mass conservative and energy stable finite difference methods for the quasi-incompressible Navier–Stokes–Cahn–Hilliard system: Primitive variable and projection-type schemes, Comput. Meth. Appl. Mech. Eng., 326 (2017), 144-174.  doi: 10.1016/j.cma.2017.08.011.  Google Scholar

[22]

D. J. E. HarvieM. R. Davidson and M. Rudman, An analysis of parasitic current generation in volume of fluid simulations, Appl. Math. Model., 30 (2006), 1056-1066.  doi: 10.1016/j.apm.2005.08.015.  Google Scholar

[23] P. C. Hiemenz and T. P. Lodge, Polymer Chemistry, 2$^{nd}$ edition, CRC Press, 2007.   Google Scholar
[24]

D. Jacqmin, Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys., 155 (1999), 96-127.  doi: 10.1006/jcph.1999.6332.  Google Scholar

[25]

D. JametD. Torres and J. U. Brackbill, On the theory and computation of surface tension: The elimination of parasitic currents through energy conservation in the second-gradient method, J. Comput. Phys., 182 (2002), 262-276.  doi: 10.1006/jcph.2002.7165.  Google Scholar

[26]

J. Liu, Thermodynamically Consistent Modeling and Simulation of Multiphase Flows, PhD dissertation, the University of Texas at Austin, 2014. Google Scholar

[27]

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1978), 2617-2654.  doi: 10.1098/rspa.1998.0273.  Google Scholar

[28]

S. Minjeaud, An adaptive pressure correction method without spurious velocities for diffuse-interface models of incompressible flows, J. Comput. Phys., 236 (2013), 143-156.  doi: 10.1016/j.jcp.2012.11.022.  Google Scholar

[29]

N. Provatas and K. Elde, Phase-Field Methods in Material Science and Engineering, Willey-VCH, Weinheim, 2010. doi: 10.1002/9783527631520.  Google Scholar

[30]

Yu. V. Sheretov, Continuum Dynamics under Spatiotemporal Averaging, RKhD, Moscow-Izhevsk, 2009 [in Russian]. Google Scholar

[31]

M. Svärd, A new Eulerian model for viscous and heat conducting compressible flows, Phys. A, 506 (2018), 350-375.  doi: 10.1016/j.physa.2018.03.097.  Google Scholar

[32]

G. Tierra and F. Guillén-González, Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models, Arch. Comput. Meth. Eng., 22 (2015), 269-289.  doi: 10.1007/s11831-014-9112-1.  Google Scholar

[33]

P. YueC. Zhou and J. J. Feng, Spontaneous shrinkage of drops and mass conservation in phase-field simulations, J. Comput. Phys., 223 (2007), 1-9.  doi: 10.1016/j.jcp.2006.11.020.  Google Scholar

[34]

I. Zacharov et al., "Zhores" – Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology, preprint, arXiv: 1902.07490. Google Scholar

[35]

A. Zlotnik, On the energy dissipative spatial discretization of the barotropic quasi-gasdynamic and compressible Navier–Stokes systems of equations in polar coordinates, Russ. J. Numer. Anal. Math. Model., 33 (2018), 199-210.  doi: 10.1515/rnam-2018-0017.  Google Scholar

[36]

A. A. Zlotnik, On conservative spatial discretizations of the barotropic quasi-gasdynamic system of equations with a potential body force, Comput. Math. Math. Phys., 56 (2016), 303-319.  doi: 10.1134/S0965542516020160.  Google Scholar

[37]

A. A. Zlotnik and T. A. Lomonosov, Conditions for $L^2$-dissipativity of linearized explicit difference schemes with regularization for 1D barotropic gas dynamics equations, Comput. Math. Math. Phys., 59 (2019), 452-464.  doi: 10.1134/S0965542519030151.  Google Scholar

[38]

A. A. Zlotnik and T. A. Lomonosov, On $L^2$-dissipativity of a linearized explicit finite-difference scheme with quasi-gasdynamic regularization for the barotropic gas dynamics system of equations, Dokl. Math., 101 (2020) (in press). Google Scholar

show all references

References:
[1]

M. O. Abu-Al-SaudS. Popinet and H. A. Tchelepi, A conservative and well-balanced surface tension model, J. Comput. Phys., 371 (2018), 896-913.  doi: 10.1016/j.jcp.2018.02.022.  Google Scholar

[2]

D. M. AndersonG. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30 (1998), 139-165.  doi: 10.1146/annurev.fluid.30.1.139.  Google Scholar

[3]

A. Arakawa and V. R. Lamb, Computational design of the basic dynamical processes of the UCLA general circulation model, Methods Comput. Phys., 17 (1977), 173-265.   Google Scholar

[4]

V. A. Balashov and E. B. Savenkov, Quasi-hydrodynamic model of multiphase fluid flows taking into account phase interaction, J. Appl. Mech. Tech. Phys., 59 (2018), 434-444.  doi: 10.1134/S0021894418030069.  Google Scholar

[5]

V. A. Balashov and E. B. Savenkov, Thermodynamically consistent spatial discretization of the one-dimensional regularized system of the Navier–Stokes–Cahn–Hilliard equations, J. Comput. Appl. Math., 372 (2020), 112743, 16 pp. doi: 10.1016/j.cam.2020.112743.  Google Scholar

[6]

V. BalashovE. Savenkov and A. Zlotnik, Numerical method for 3D two-component isothermal compressible flows with application to digital rock physics, Russian J. Numer. Anal. Math. Modelling, 34 (2019), 1-13.  doi: 10.1515/rnam-2019-0001.  Google Scholar

[7]

V. Balashov and A. Zlotnik, An energy dissipative spatial discretization for the regularized compressible Navier–Stokes–Cahn–Hilliard system of equations, Math. Model. Anal., 25 (2020), 110-129.  doi: 10.3846/mma.2020.10577.  Google Scholar

[8]

V. BalashovA. Zlotnik and E. Savenkov, Analysis of a regularized model for the isothermal two-component mixture with the diffuse interface, Russian J. Numer. Anal. Math. Modelling, 32 (2017), 347-358.  doi: 10.1515/rnam-2017-0033.  Google Scholar

[9] M. J. Blunt, Multiphase Flow in Permeable Media: A Pore-Scale Perspective, Cambridge University Press, 2017.  doi: 10.1017/9781316145098.  Google Scholar
[10]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[11]

B. N. Chetverushkin, Kinetic Schemes and Quasi-Gasdynamic System of Equations, CIMNE, Barcelona, 2008. Google Scholar

[12]

K. Connington and T. Lee, A review of spurious currents in the lattice Boltzmann method for multiphase flows, J. Mech. Sci. Technology, 26 (2012), 3857-3863.  doi: 10.1007/s12206-012-1011-5.  Google Scholar

[13]

M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.  doi: 10.1007/BF01385847.  Google Scholar

[14]

A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 24 (1995), 1491-1514.  doi: 10.1016/0362-546X(94)00205-V.  Google Scholar

[15]

A. Yu. Demianov, O. Yu. Dinariev and N. V. Evseev, Introduction to the Density Functional Method in Hydrodynamics, Fizmatlit, Moscow, 2014. Google Scholar

[16]

T. G. Elizarova, Quasi-Gas Dynamic Equations, Computational Fluid and Solid Mechanics. Springer, Dordrecht, 2009. doi: 10.1007/978-3-642-00292-2.  Google Scholar

[17]

F. FrankC. LiuF. O. Alpak and B. Riviere, A finite volume/discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging, Comput. Geosci., 22 (2018), 543-563.  doi: 10.1007/s10596-017-9709-1.  Google Scholar

[18]

Y. GongJ. Zhao and Q. Wang, An energy stable algorithm for a quasi-incompressible hydrodynamic phase-field model of viscous fluid mixtures with variable densities and viscosities, Comput. Phys. Comm., 219 (2017), 20-34.  doi: 10.1016/j.cpc.2017.05.002.  Google Scholar

[19]

L. GoudenègeD. Martin and G. Vial, High order finite element calculations for the Cahn-Hilliard equation, J. Sci. Comput., 52 (2012), 294-321.  doi: 10.1007/s10915-011-9546-7.  Google Scholar

[20]

J.-L. Guermond and B. Popov, Viscous regularization of the Euler equations and entropy principles, SIAM J. Appl. Math., 74 (2014), 284-305.  doi: 10.1137/120903312.  Google Scholar

[21]

Z. GuoP. LinJ. Lowengrub and S. M. Wise, Mass conservative and energy stable finite difference methods for the quasi-incompressible Navier–Stokes–Cahn–Hilliard system: Primitive variable and projection-type schemes, Comput. Meth. Appl. Mech. Eng., 326 (2017), 144-174.  doi: 10.1016/j.cma.2017.08.011.  Google Scholar

[22]

D. J. E. HarvieM. R. Davidson and M. Rudman, An analysis of parasitic current generation in volume of fluid simulations, Appl. Math. Model., 30 (2006), 1056-1066.  doi: 10.1016/j.apm.2005.08.015.  Google Scholar

[23] P. C. Hiemenz and T. P. Lodge, Polymer Chemistry, 2$^{nd}$ edition, CRC Press, 2007.   Google Scholar
[24]

D. Jacqmin, Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys., 155 (1999), 96-127.  doi: 10.1006/jcph.1999.6332.  Google Scholar

[25]

D. JametD. Torres and J. U. Brackbill, On the theory and computation of surface tension: The elimination of parasitic currents through energy conservation in the second-gradient method, J. Comput. Phys., 182 (2002), 262-276.  doi: 10.1006/jcph.2002.7165.  Google Scholar

[26]

J. Liu, Thermodynamically Consistent Modeling and Simulation of Multiphase Flows, PhD dissertation, the University of Texas at Austin, 2014. Google Scholar

[27]

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1978), 2617-2654.  doi: 10.1098/rspa.1998.0273.  Google Scholar

[28]

S. Minjeaud, An adaptive pressure correction method without spurious velocities for diffuse-interface models of incompressible flows, J. Comput. Phys., 236 (2013), 143-156.  doi: 10.1016/j.jcp.2012.11.022.  Google Scholar

[29]

N. Provatas and K. Elde, Phase-Field Methods in Material Science and Engineering, Willey-VCH, Weinheim, 2010. doi: 10.1002/9783527631520.  Google Scholar

[30]

Yu. V. Sheretov, Continuum Dynamics under Spatiotemporal Averaging, RKhD, Moscow-Izhevsk, 2009 [in Russian]. Google Scholar

[31]

M. Svärd, A new Eulerian model for viscous and heat conducting compressible flows, Phys. A, 506 (2018), 350-375.  doi: 10.1016/j.physa.2018.03.097.  Google Scholar

[32]

G. Tierra and F. Guillén-González, Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models, Arch. Comput. Meth. Eng., 22 (2015), 269-289.  doi: 10.1007/s11831-014-9112-1.  Google Scholar

[33]

P. YueC. Zhou and J. J. Feng, Spontaneous shrinkage of drops and mass conservation in phase-field simulations, J. Comput. Phys., 223 (2007), 1-9.  doi: 10.1016/j.jcp.2006.11.020.  Google Scholar

[34]

I. Zacharov et al., "Zhores" – Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology, preprint, arXiv: 1902.07490. Google Scholar

[35]

A. Zlotnik, On the energy dissipative spatial discretization of the barotropic quasi-gasdynamic and compressible Navier–Stokes systems of equations in polar coordinates, Russ. J. Numer. Anal. Math. Model., 33 (2018), 199-210.  doi: 10.1515/rnam-2018-0017.  Google Scholar

[36]

A. A. Zlotnik, On conservative spatial discretizations of the barotropic quasi-gasdynamic system of equations with a potential body force, Comput. Math. Math. Phys., 56 (2016), 303-319.  doi: 10.1134/S0965542516020160.  Google Scholar

[37]

A. A. Zlotnik and T. A. Lomonosov, Conditions for $L^2$-dissipativity of linearized explicit difference schemes with regularization for 1D barotropic gas dynamics equations, Comput. Math. Math. Phys., 59 (2019), 452-464.  doi: 10.1134/S0965542519030151.  Google Scholar

[38]

A. A. Zlotnik and T. A. Lomonosov, On $L^2$-dissipativity of a linearized explicit finite-difference scheme with quasi-gasdynamic regularization for the barotropic gas dynamics system of equations, Dokl. Math., 101 (2020) (in press). Google Scholar

Figure 1.  $ \tilde\Psi_0(C)\equiv\Psi_0(\tilde\rho, C) $ for $ \omega_2 > \omega_1 $ and some fixed $ \tilde\rho>0 $
Figure 4.  Distributions of $ C $ and $ \rho $ along the segment $ x_1\in[0.5X, X] $ and $ x_2 = x_3 = 0.5X $, at the vicinity of the interface at $ t = 20\cdot10^3\Delta t $
Figure 2.  Location of nodes of $ \omega_{h\bar{k},\bar{l}^*,\bar{m}^*} $ (thick dots) and $ \omega_{h\bar{k}^*,\bar{l},\bar{m}} $ (red crosses), where $ u_k $ and $ \Pi_{lk} $, $ l\neq k $, are respectively defined
Figure 3.  Droplet interface evolution in the case (Ⅰ) for $ R = 0.25X $. Distribution of $ C(x) $ in the section $ x_1,x_2\in[0.5X,0.87X] $, $ x_3 = 0.5X $, is represented
Figure 5.  Evolution of $ \sigma_L(t) $: for $ R = 0.18X $ in the cases (Ⅰ)-(Ⅲ) (left) and for several $ R $ in the case (Ⅲ) (right)
Figure 6.  Observable dependence of $ \Delta p $ on $ 1/R_a $ for different $ R $ in (46)
Figure 7.  Evolution of $ {\bar{E}}_{\text{kin}} $ and $ \mathcal{E}_h-\tilde{E} $ for the droplet with $ R = 0.25X $ and $ \tilde{E} = 9.16034\cdot 10^{-5}\, \text{J} $
Figure 8.  $ {\bar{E}}_{\text{kin}} (t) $ computed by schemes $ A $ (from this paper) and $ B $ (from [6])
Figure 9.  Evolution of $ C_{\min} $ and $ C_{\max} $ (for spinodal decomposition)
Figure 10.  $ \bar{E}_\text{kin}(t) $ for $ \alpha^\ast = 0 $ and $ 0.5 $ and some $ \Delta t $ (the break in the graph line means that computations collapse due to instability)
Figure 12.  $ \bar{E}_{\text{kin}}(t) $ for some $ \alpha^\ast\geq0.5 $ and $ \Delta t $ (the break in the graph line means that computations collapse due to instability)
Figure 13.  Evolution of $ {\bar{E}}_{\text{kin}} $ and $ \mathcal{E}_h $ (for spinodal decomposition)
Figure 14.  Isosurfaces $ C = 0.5 $ at different time moments (for spinodal decomposition)
[1]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[6]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[7]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[8]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[9]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[10]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[11]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[12]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[13]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[14]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[15]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[17]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[18]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[19]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[20]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

 Impact Factor: 

Metrics

  • PDF downloads (98)
  • HTML views (229)
  • Cited by (0)

Other articles
by authors

[Back to Top]