Advanced Search
Article Contents
Article Contents

Uncertainty in finite-time Lyapunov exponent computations

Partial support from the Australian Research Council (grants FT130100484 and DP200101764) and the Australian Department of Education and Training (Endeavour Research Leadership Award) are gratefully acknowledged

Abstract Full Text(HTML) Figure(11) Related Papers Cited by
  • The Finite-Time Lyapunov Exponent (FTLE) is a well-established numerical tool for assessing stretching rates of initial parcels of fluid, which are advected according to a given time-varying velocity field (which is often available only as data). When viewed as a field over initial conditions, the FTLE's spatial structure is often used to infer the nonhomogeneous transport. Given the measurement and resolution errors inevitably present in the unsteady velocity data, the computed FTLE field should in reality be treated only as an approximation. A method which, for the first time, is able for attribute spatially-varying errors to the FTLE field is developed. The formulation is, however, confined to two-dimensional flows. Knowledge of the errors prevent reaching erroneous conclusions based only on the FTLE field. Moreover, it is established that increasing the spatial resolution does not improve the accuracy of the FTLE field in the presence of velocity uncertainties, and indeed has the opposite effect. Stochastic simulations are used to validate and exemplify these results, and demonstrate the computability of the error field.

    Mathematics Subject Classification: Primary: 37M25, 37N10; Secondary: 60H10.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Double-gyre computations with $ L_r = 0.005 $ and $ v_r = 2 \times 10^{-5} $: (a) FTLE field $ \Lambda $, and (b) the error field $ {\mathcal E} $

    Figure 2.  As in Fig. 1, but with $ L_r = 0.05 $ and $ v_r = 0.002 $

    Figure 3.  (a, b, c) Three (of the $ 100,000 $) sample FTLE fields, and (d) the mean FTLE field, computed when using stochastic simulation of (6) for the double-gyre system with $ L_r = 0.05 $ and $ v_r = 0.002 $

    Figure 4.  (a) The standard deviation of the FTLE fields computed from the $ 100,000 $ stochastic simulations, and (b) the theoretical error field (the same as Fig. 2(b), but scaled to elucidate variation at values of FTLE comparable to (a))

    Figure 5.  The probability density of the FTLE value from the stochastic simulations of the double-gyre at two selected points indicated in Figs. 4(a) and 3(d): (a) maximum standard-deviation point (at red 'x'), and (b) minimum standard deviation point (at red circle)

    Figure 6.  The probability density of the FTLE value from the stochastic simulations of the double-gyre with $ L_r = 0.05 $ and $ v_r = 0.002 $; the red star is the value from the standard FTLE computation: (a) at $ (1.05,0.1) $ and (b) at $ (1.15,0.1) $

    Figure 7.  Wobbly Duffing from from $ t_0 = 4 $ with time-of-flow $ T = 4 $, with $ L_r = 0.2 $ and $ v_r = 0.002 $: (a) FTLE field, and (b) FTLE error field

    Figure 8.  Scatter plots of the theoretical error with (left) the standard deviation, and (right) the range, obtained from $ 1000 $ stochastic simulations. Each point (red circle) in the plot corresponds to a point in the spatial domain at time $ t_0 $, and the blue line is a linear fit. The values chosen are (top) $ L_r = 0.2 $ and $ v_r = 0.002 $, and (bottom) $ L_r = 0.05 $ and $ v_r = 0.00002 $

    Figure 9.  The $ v_r $ dependence analyzed for the theoretical and stochastically-determined errors in the FTLE field, for the wobbly Duffing system with $ L_r = 0.2 $: (a) theoretical (red-solid), standard deviation (green-dashed) and range (blue-dot-dashed) norms, and (b-d) investigations on the dependence of $ v_r $ on the FTLE spreading measures $ \| {\mathrm{theory}} \| $, $ \| {\mathrm{std}} \| $ and $ \| {\mathrm{range}} \| $ respectively

    Figure 10.  The $ L_r $ dependence analyzed for the theoretical and stochastically-determined errors in the FTLE field, for the wobbly Duffing system with $ v_r = 0.00002 $: (a) theoretical (red-solid), standard deviation (green-dashed) and range (blue-dot-dashed) norms, and (b-d) investigations on the dependence of $ v_r $ on the FTLE spreading measures $ \| {\mathrm{theory}} \| $, $ \| {\mathrm{std}} \| $ and $ \| {\mathrm{range}} \| $ respectively

    Figure 11.  FTLE fields (left) and FTLE error fields (right) for several situations based on the Copernicus data: (top) from 30 January 2016 to 29 February 2016 (middle) 25 February 2011 to 26 April 2011, and (bottom) 25 February 2011 to 13 September 2011

  • [1] M. R. Allshouse and T. Peacock, Refining finite-time Lyapunov exponent ridges and the challenges of classifying them, Chaos, 25 (2015), 14pp. doi: 10.1063/1.4928210.
    [2] L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.
    [3] H. Babaee, M. Farazmand, G. Haller and T. P. Sapsis, Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents, Chaos, 27 (2017), 12pp. doi: 10.1063/1.4984627.
    [4] M. BadasF. Domenichini and G. Querzoli, Quantification of the blood mixing in the left ventricle using finite time Lyapunov exponents, Meccanica, 52 (2017), 529-544.  doi: 10.1007/s11012-016-0364-8.
    [5] S. Balasuriya, Barriers and Transport in Unsteady Flows. A Melnikov Approach, Mathematical Modeling and Computation, 21, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. doi: 10.1137/1.9781611974584.ch1.
    [6] S. Balasuriya, A numerical scheme for computing stable and unstable manifolds in nonautonomous flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 22pp. doi: 10.1142/S021812741630041X.
    [7] S. Balasuriya, Stochastic sensitivity: A computable Lagrangian uncertainty measure for unsteady flows, SIAM Review, in press.
    [8] S. Balasuriya and G. Gottwald, Estimating stable and unstable sets and their role as transport barriers in stochastic flows, Phys. Rev. E, 98 (2018). doi: 10.1103/PhysRevE.98.013106.
    [9] S. BalasuriyaR. Kalampattel and N. T. Ouellette, Hyperbolic neighborhoods as organizers of finite-time exponential stretching, J. Fluid Mech., 807 (2016), 509-545.  doi: 10.1017/jfm.2016.633.
    [10] S. BalasuriyaN. T. Ouellette and I. I. Rypina, Generalized Lagrangian coherent structures, Phys. D, 372 (2018), 31-51.  doi: 10.1016/j.physd.2018.01.011.
    [11] A. BergerT. S. Doan and S. Siegmund, A definition of spectrum for differential equations on finite time, J. Differential Equations, 246 (2009), 1098-1118.  doi: 10.1016/j.jde.2008.06.036.
    [12] F. Beron-Vera, Mixing by low- and high-resolution surface geostrophic currents, J. Geophys. Res. Oceans, 115 (2010). doi: 10.1029/2009JC006006.
    [13] F. Beron-VeraM. OlascoagaM. Brown and H.. Koçak, Zonal jets as meridional transport barriers in the subtropical and polar lower stratosphere, J. Atmos. Sci., 69 (2012), 753-767.  doi: 10.1175/JAS-D-11-084.1.
    [14] A. BozorgMagham and S. Ross, Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty, Commun. Nonlin. Sci. Numer. Simul., 22 (2015), 964-979.  doi: 10.1016/j.cnsns.2014.07.011.
    [15] A. E. BozorgMaghamS. D. Ross and D. G. Schmale, Real-time prediction of atmospheric Lagrangian coherent structures based on forecast data: An application and error analysis, Phys. D, 258 (2013), 47-60.  doi: 10.1016/j.physd.2013.05.003.
    [16] S. L. Brunton and C. W. Rowley, Fast computation of finite-time Lyapunov exponent fields for unsteady flows, Chaos, 20 (2010), 12pp. doi: 10.1063/1.3270044.
    [17] T. F. Dauche, C. Ates, T. Rapp, M. C. Keller and G. Chaussonnet, et al., Analyzing the interaction of vortex and gas-liquid interface dynamics in fuel spray nozzles by means of Lagrangian-coherent structures (2D), Energies, 12 (2019). doi: 10.3390/en12132552.
    [18] F. d'Ovidio, V. Fernández, E. Hernández-Garcia and C. López, Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents, Geophys. Res. Lett., 31 (2004). doi: 10.1029/2004GL020328.
    [19] J. Finn and S. V. Apte, Integrated computation of finite-time Lyapunov exponent fields during direct numerical simulation of unsteady flows, Chaos, 23 (2013), 14pp. doi: 10.1063/1.4795749.
    [20] A. FortinT. Briffard and A. Garon, A more efficient anisotropic mesh adaptation for the computation of Lagrangian coherent structures, J. Comp. Phys., 285 (2015), 100-110.  doi: 10.1016/j.jcp.2015.01.010.
    [21] D. Garaboa-PazJ. Eiras-Barca and V. Perez-Munuzuri, Climatology of Lyapunov exponents: The link between atmospheric rivers and large-scale mixing variability, Earth System Dyn., 8 (2017), 865-873.  doi: 10.5194/esd-8-865-2017.
    [22] H. GuoW. HeT. PeterkaH.-W. ShenS. Collis and J. Helmus, Finite-time Lyapunov exponents and Lagrangian coherent structures in uncertain unsteady flows, IEEE Trans. Visual. Comp. Graphics, 22 (2016), 1672-1682.  doi: 10.1109/TVCG.2016.2534560.
    [23] A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland and G. Haller, A critical comparison of Lagrangian methods for coherent structure detection, Chaos, 27 (2017), 25pp. doi: 10.1063/1.4982720.
    [24] G. Haller, A variational theory of hyperbolic Lagrangian coherent structures, Phys. D, 240 (2011), 574-598.  doi: 10.1016/j.physd.2010.11.010.
    [25] G. Haller, Lagrangian coherent structures, in Annual Review of Fluid Mechanics, Annu. Rev. Fluid Mech., 47, Annual Reviews, Palo Alto, CA, 2015,137–162. doi: 10.1146/annurev-fluid-010313-141322.
    [26] G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent, Chaos, 21 (2011), 7pp. doi: 10.1063/1.3579597.
    [27] G.-S. HeC. PanL.-H. FengQ. Gao and J.-J. Wang, Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer, J. Fluid Mech., 792 (2016), 274-306.  doi: 10.1017/jfm.2016.81.
    [28] I. Hernández-CarrascoC. LópezE. Hernández-Garcia and A. Turiel, How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics?, Ocean Model., 36 (2011), 208-218.  doi: 10.1016/j.ocemod.2010.12.006.
    [29] P. Holmes and D. Whitley, On the attracting set for Duffing's equation, Phys. D, 7 (1983), 111-123.  doi: 10.1016/0167-2789(83)90121-5.
    [30] Z. Y. Hu and M. Zhou, Lagrangian analysis of surface transport patterns in the northern south China sea, Deep Sea Res. II: Topical Stud. Oceanography, 167 (2019), 4-13.  doi: 10.1016/j.dsr2.2019.06.020.
    [31] F. HuhnA. von KamekeS. Allen-PerkinsP. MonteroA. Venancio and V. Pérez-Muñuzuri, Horizontal Lagrangian transport in a tidal-driven estuary–Transport barriers attached to prominent coastal boundaries, Continental Shelf Res., 39-40 (2012), 1-13.  doi: 10.1016/j.csr.2012.03.005.
    [32] F. Huhn, A. von Kameke, V. Pérez-Muñuzuri, M. J. Olascoaga and F. J. Beron-Vera, The impact of advective transport by the South Indian Ocean Countercurrent on the Madagascar plankton bloom, Geophys. Res. Lett., 39 (2012). doi: 10.1029/2012GL051246.
    [33] H. KafiabadP. Chan and G. Haller, Lagrangian detection of wind shear for landing aircraft, J. Atmos. Ocean. Tech., 30 (2013), 2808-2819.  doi: 10.1175/JTECH-D-12-00186.1.
    [34] E. KaiV. RossiJ. SudreH. WeirmerskirchC. LopezE. Hernandez-GarciaF. Marsac and V. Garcon, Top marine predators track Lagrangian coherent structures, Proc. Nat. Acad. Sci., 106 (2009), 8245-8250.  doi: 10.1073/pnas.0811034106.
    [35] A. KamekeS. KastensS. RüttingerS. Herres-Pawlis and M. Schlüter, How coherent structures dominate the residence time in a bubble wake: An experimental example, Chem. Engrg. Sci., 207 (2019), 317-326.  doi: 10.1016/j.ces.2019.06.033.
    [36] D. Karrasch and G. Haller, Do finite-size Lyapunov exponents detect coherent structures?, Chaos, 23 (2013), 11pp. doi: 10.1063/1.4837075.
    [37] S. KeatingK. Smith and P. Kramer, Diagnosing lateral mixing in the upper ocean with virtual tracers: Spatial and temporal resolution dependence, J. Phys. Oceanography, 41 (2011), 1512-1534.  doi: 10.1175/2011JPO4580.1.
    [38] P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of SDE Through Computer Experiments, Universitext, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-57913-4.
    [39] T.-Y. Koh and B. Legras, Hyperbolic lines and the stratospheric polar vortex, Chaos, 12 (2002), 382-394.  doi: 10.1063/1.1480442.
    [40] A. KumarS. Dwivedi and A. Pandey, Quantifying predictability of sea ice around the Indian Antarctic stations using coupled ocean sea ice model with shelf ice, Polar Sci., 18 (2018), 83-93.  doi: 10.1016/j.polar.2018.04.003.
    [41] G. LacorataR. CorradoF. Falcini and R. Santoleri, FSLE analysis and validation of Lagrangian simulations based on satellite-derived GlobCurrent velocity data, Remote Sensing Environ., 221 (2019), 136-143.  doi: 10.1016/j.rse.2018.11.013.
    [42] F. Lekien and S. D. Ross, The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds, Chaos, 20 (2010), 20pp. doi: 10.1063/1.3278516.
    [43] S. Leung, An Eulerian approach for computing the finite time Lyapunov exponent, J. Comput. Phys., 230 (2011), 3500-3524.  doi: 10.1016/j.jcp.2011.01.046.
    [44] D. Lipinski and K. Mohseni, A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures, Chaos, 20 (2010), 9pp. doi: 10.1063/1.3270049.
    [45] K. May-Newman, V. Vu and B. Herold, Modeling the link between left ventricular flow and thromboembolic risk using Lagrangian coherent structures, Fluids, 1 (2016). doi: 10.3390/fluids1040038.
    [46] P. Miron, J. Vétel and A. Garon, On the use of the finite-time Lyapunov exponent to reveal complex flow physics in the wake of a mechanical valve, Exp. Fluids, 55 (2014). doi: 10.1007/s00348-014-1814-5.
    [47] D. A. Nelson and G. B. Jacobs, DG-FTLE: Lagrangian coherent structures with high-order discontinuous Galerkin methods, J. Comput. Phys., 295 (2015), 65-86.  doi: 10.1016/j.jcp.2015.03.040.
    [48] Y.-K. Ng and S. Leung, Estimating the finite-time Lyapunov exponent from sparse Lagrangian trajectories, Commun. Comput. Phys., 26 (2019), 1143-1177.  doi: 10.4208/cicp.OA-2018-0149.
    [49] G. Norgard and P.-T. Bremmer, Second derivative ridges are straight lines and the implications for computing Lagrangian Coherent Structures, Phys. D, 241 (2012), 1475-1476.  doi: 10.1016/j.physd.2012.05.006.
    [50] B. Øksendahl, Stochastic Differential Equations, Universitext, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-662-03185-8.
    [51] A. B. Olcay, T. S. Pottebaum and P. S. Krueger, Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors, Chaos, 20 (2010), 10pp. doi: 10.1063/1.3276062.
    [52] T. Peacock and J. Dabiri, Introduction to focus issue: Lagrangian coherent structures, Chaos, 20 (2010). doi: 10.1063/1.3278173.
    [53] A. PojeA. HazaT. ÖzgökmenM. Magaldi and Z. Garrafo, Resolution dependent relative dispersion statistics in a hierarchy of ocean models, Ocean Model., 31 (2010), 36-50.  doi: 10.1016/j.ocemod.2009.09.002.
    [54] M. Rockwood, T. Loiselle and M. Green, Practical concerns of implementing a finite-time Lyapunov exponent analysis with under-resolved data, Exp. Fluids, 60 (2019). doi: 10.1007/s00348-018-2658-1.
    [55] M. RudkoI. Kamenkovich and D. Nolan, Stability of baroclinic vortices on the $\beta$ plane and implications for transport, J. Phys. Oceanography, 46 (2016), 3245-3262.  doi: 10.1175/JPO-D-16-0067.1.
    [56] R. Samelson, Lagrangian motion, coherent structures, and lines of persistent material strain, Annu. Rev. Mar. Sci., 5 (2013), 137-163.  doi: 10.1146/annurev-marine-120710-100819.
    [57] R. Sampath, M. Mathur and S. Chakravarthy, Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor, Phys. Rev. E, 94 (2016). doi: 10.1103/PhysRevE.94.062209.
    [58] B. SandstedeS. BalasuriyaC. K. R. T. Jones and P. Miller, Melnikov theory for finite-time vector fields, Nonlinearity, 13 (2000), 1357-1377.  doi: 10.1088/0951-7715/13/4/321.
    [59] K. ScalesE. HazenM. JacoxF. Castruccio and S. Bograd, Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures, Proc. Nat. Acad. Sci., 115 (2018), 7362-7367.  doi: 10.1073/pnas.1801270115.
    [60] B. Schindler, R. Peikert, R. Fuchs and H. Theisl, Ridge concepts for the visualization of Lagrangian coherent structures, in Topological Methods in Data Analysis and Visualization II, Math. Vis., Springer, Heidelberg, 2012,221–236. doi: 10.1007/978-3-642-23175-9_15.
    [61] C. Senatore and S. Ross, Detection and characterization of transport barriers in complex flows via ridge extraction of the finite time Lyapunov exponent field, Internat. J. Numer. Methods Engrg., 86 (2011), 1163-1174.  doi: 10.1002/nme.3101.
    [62] S. Shadden, Lagrangian coherent structures, in Transport and Mixing in Laminar Flows: From Microfluidics to Oceanic Currents, Wiley, 2011. doi: 10.1002/9783527639748.ch3.
    [63] S. C. ShaddenF. Lekien and J. E. Marsden, Definition and properties of Lagrangian coherent structures from Lyapunov exponents in two-dimensional aperiodic flows, Phys. D, 212 (2005), 271-304.  doi: 10.1016/j.physd.2005.10.007.
    [64] E. Shuckburgh, Mapping unstable manifolds using drifters/floats in a Southern Ocean field campaign, in Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, 1479, AIP, 2012,650–653. doi: 10.1063/1.4756218.
    [65] K. G. D. Sulalitha Priyankara, S. Balasuriya and E. Bollt, Quantifying the role of folding in nonautonomous flows: The unsteady double-gyre, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 19pp. doi: 10.1142/S0218127417501565.
    [66] P. Tallagragada and S. D. Ross, A set oriented definition of finite-time Lyapunov exponents and coherent sets, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 1106-1126.  doi: 10.1016/j.cnsns.2012.09.017.
    [67] W. TangP. Chan and G. Haller, Lagrangian coherent structure analysis of terminal winds detected by LIDAR. Part 1: Turbulent structures, J. Appl. Meteor. Climatol., 50 (2011), 325-338.  doi: 10.1175/2010JAMC2508.1.
    [68] J.-L. Thiffeault and A. H. Boozer, Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions, Chaos, 11 (2001), 16-28.  doi: 10.1063/1.1342079.
    [69] G. You and S. Leung, An improved Eulerian approach for the finite time Lyapunov exponent, J. Sci. Comput., 76 (2018), 1407-1435.  doi: 10.1007/s10915-018-0669-y.
    [70] M. ZhangH. ChenQ. WuX. LiL. Xiang and G. Wang, Experimental and numerical investigation of cavitating vortical patterns around a Tulin hydrofoil, Ocean Engrg., 173 (2019), 298-307.  doi: 10.1016/j.oceaneng.2018.12.064.
  • 加载中



Article Metrics

HTML views(867) PDF downloads(1300) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint