[1]
|
M. I. Bakirova, V. A. Dorodnitsyn and R. V. Kozlov, Symmetry-preserving difference schemes for some heat transfer equations, J. Phys. A, 30 (1997), 8139-8155.
doi: 10.1088/0305-4470/30/23/014.
|
[2]
|
A. Bihlo, Invariant meshless discretization schemes, J. Phys. A, 46 (2013), 12pp.
doi: 10.1088/1751-8113/46/6/062001.
|
[3]
|
A. Bihlo, X. Coiteux-Roy and P. Winternitz, The Korteweg–de Vries equation and its symmetry-preserving discretization, J. Phys. A, 48 (2015), 25pp.
doi: 10.1088/1751-8113/48/5/055201.
|
[4]
|
A. Bihlo and J.-C. Nave, Invariant discretization scheme using evolution-projection techniques, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), 23pp.
doi: 10.3842/SIGMA.2013.052.
|
[5]
|
A. Bihlo and J.-C. Nave, Convecting reference frames and invariant numerical models, J. Comput. Phys., 272 (2014), 656-663.
doi: 10.1016/j.jcp.2014.04.042.
|
[6]
|
A. Bihlo and R. O. Popovych, Invariant discretization schemes for the shallow water equations, SIAM J. Sci. Comput., 34 (2012), B810-B839.
doi: 10.1137/120861187.
|
[7]
|
A. Bihlo and F. Valiquette, Symmetry-preserving numerical schemes, in Symmetries and Integrability of Difference Equations, CRM Ser. Math. Phys., Springer, Cham, 2017,261–324.
doi: 10.1007/978-3-319-56666-5_6.
|
[8]
|
A. Bihlo and F. Valiquette, Symmetry-preserving finite element schemes: An introductory investigation, SIAM J. Sci. Comput., 41 (2019), A3300-A3325.
doi: 10.1137/18M1177524.
|
[9]
|
S. Blanes and F. Casas, A Concise Introduction to Geometric Numerical Integration, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016.
|
[10]
|
G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences, 154, Springer-Verlag, New York, 2002.
doi: 10.1007/b97380.
|
[11]
|
A. Bourlioux, C. Cyr-Gagnon and P. Winternitz, Difference schemes with point symmetries and their numerical tests, J. Phys. A, 39 (2006), 6877-6896.
doi: 10.1088/0305-4470/39/22/006.
|
[12]
|
A. Bourlioux, R. Rebelo and P. Winternitz, Symmetry preserving discretization of $SL(2, \mathbb R)$ invariant equations, J. Nonlinear Math. Phys., 15 (2008), 362-372.
doi: 10.2991/jnmp.2008.15.s3.35.
|
[13]
|
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer, New York, 2008.
doi: 10.1007/978-0-387-75934-0.
|
[14]
|
C. Budd and V. Dorodnitsyn, Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation. Symmetry and integrability of difference equations, J. Phys. A, 34 (2001), 10387-10400.
doi: 10.1088/0305-4470/34/48/305.
|
[15]
|
V. A. Dorodnitsyn, Transformation groups in difference spaces, J. Soviet Math., 55 (1991), 1490-1517.
doi: 10.1007/BF01097535.
|
[16]
|
V. Dorodnitsyn, Applications of Lie Groups to Difference Equations, Differential and Integral Equations and Their Applications, 8, CRC Press, Boca Raton, FL, 2011.
|
[17]
|
V. Dorodnitsyn and P. Winternitz, Lie point symmetry preserving discretization for variable coefficient Korteweg-de Vries equations. Modern group analysis, Nonlinear Dynam., 22 (2000), 49-59.
doi: 10.1023/A:1008365224018.
|
[18]
|
D. Estep, A posteriori error bounds and global error control for approximation of ordinary differential equations, SIAM J. Numer. Anal., 32 (1995), 1-48.
doi: 10.1137/0732001.
|
[19]
|
D. Estep and D. French, Global error control for the continuous Galerkin finite element method for ordinary differential equations, RAIRO Modél. Math. Anal. Numér., 28 (1994), 815-852.
doi: 10.1051/m2an/1994280708151.
|
[20]
|
D. J. Estep and A. M. Stuart, The dynamical behavior of the discontinuous Galerkin method and related difference schemes, Math. Comp., 71 (2002), 1075-1103.
doi: 10.1090/S0025-5718-01-01364-3.
|
[21]
|
M. Fels and P. J. Olver, Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math., 55 (1999), 127-208.
doi: 10.1023/A:1006195823000.
|
[22]
|
D. A. French and J. W. Schaeffer, Continuous finite element methods which preserve energy properties for nonlinear problems, Appl. Math. Comput., 39 (1990), 271-295.
|
[23]
|
R. B. Gardner, The Method of Equivalence and its Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 58, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.
doi: 10.1137/1.9781611970135.
|
[24]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-30666-8.
|
[25]
|
P. Hansbo, A note on energy conservation for Hamiltonian systems using continuous time finite elements, Commun. Numer. Meth. Engrg., 17 (2001), 863-869.
doi: 10.1002/cnm.458.
|
[26]
|
P. E. Hydon, Symmetry Methods for Differential Equations. A Beginner's Guide, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9780511623967.
|
[27]
|
J. Jackaman, Finite Element Methods as Geometric Structure Preserving Algorithms, Ph.D thesis, University of Reading, 2018.
|
[28]
|
C. Johnson, Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25 (1988), 908-926.
doi: 10.1137/0725051.
|
[29]
|
N. Kamran, Contributions to the study of the equivalence problem of Élie Cartan and its applications to partial and ordinary differential equations, Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8° (2), 45 (1989), 122pp.
|
[30]
|
P. Kim, Invariantization of the Crank-Nicolson method for Burgers' equation, Phys. D, 237 (2008), 243-254.
doi: 10.1016/j.physd.2007.09.001.
|
[31]
|
P. Kim and P. J. Olver, Geometric integration via multi-space, Regul. Chaotic Dyn., 9 (2004), 213-226.
doi: 10.1070/RD2004v009n03ABEH000277.
|
[32]
|
I. A. Kogan and P. J. Olver, Invariant Euler–Lagrange equations and the invariant variational bicomplex, Acta Appl. Math., 76 (2003), 137-193.
doi: 10.1023/A:1022993616247.
|
[33]
|
B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge Monographs on Applied and Computational Mathematics, 14, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511614118.
|
[34]
|
D. Levi, L. Martina and P. Winternitz, Structure preserving discretizations of the Liouville equation and their numerical tests, SIGMA Symmetry Integrability Geom. Methods Appl., 11 (2015), 20pp.
doi: 10.3842/SIGMA.2015.080.
|
[35]
|
K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005.
doi: 10.1017/CBO9781107325883.
|
[36]
|
E. L. Mansfield, A Practical Guide to the Invariant Calculus, Cambridge Monographs on Applied and Computational Mathematics, 26, Cambridge University Press, Cambridge, 2010.
doi: 10.1017/CBO9780511844621.
|
[37]
|
G. Marí Beffa and E. L. Mansfield, Discrete moving frames on lattice varieties and lattice-based multispaces, Found. Comput. Math., 18 (2018), 181-247.
doi: 10.1007/s10208-016-9337-5.
|
[38]
|
R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021-1045.
doi: 10.1098/rsta.1999.0363.
|
[39]
|
T. E. Oliphant, A Guide to NumPy, Trelgol Publishing, USA, 2006.
|
[40]
|
P. J. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511609565.
|
[41]
|
P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4350-2.
|
[42]
|
P. J. Olver, Joint invariant signatures, Found. Comput. Math., 1 (2001), 3-67.
doi: 10.1007/s10208001001.
|
[43]
|
P. J. Olver, Invariants of finite and discrete group actions via moving frames, preprint.
|
[44]
|
P. J. Olver and J. Pohjanpelto, Moving frames for Lie pseudo-groups, Canad. J. Math., 60 (2008), 1336-1386.
doi: 10.4153/CJM-2008-057-0.
|
[45]
|
V. Ovsienko and S. Tabachnikov, What is $\ldots$ the Schwarzian derivative?, Notices Amer. Math. Soc., 56 (2009), 34-36.
|
[46]
|
G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 7pp.
doi: 10.1088/1751-8113/41/4/045206.
|
[47]
|
F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange and F. Luporini, et al., Firedrake: Automating the finite element method by composing abstractions, ACM Trans. Math. Software, 43 (2017), 27pp.
doi: 10.1145/2998441.
|
[48]
|
R. Rebelo and F. Valiquette, Symmetry preserving numerical schemes for partial differential equations and their numerical tests, J. Difference Equ. Appl., 19 (2103), 738-757.
doi: 10.1080/10236198.2012.685470.
|
[49]
|
J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Applied Mathematics and Mathematical Computation, 7, Chapman & Hall, London, 1994.
|
[50]
|
A. T. S. Wan, A. Bihlo and J.-C. Nave, The multiplier method to construct conservative finite difference schemes for ordinary and partial differential equations, SIAM J. Numer. Anal., 54 (2016), 86-119.
doi: 10.1137/140997944.
|
[51]
|
A. T. S. Wan, A. Bihlo and J.-C. Nave, Conservative methods for dynamical systems, SIAM J. Numer. Anal., 55 (2017), 2255-2285.
doi: 10.1137/16M110719X.
|
[52]
|
G. Zhong and J. E. Marsden, Lie–Poisson, Hamilton–Jacobi theory and Lie–Poisson integrators, Phys. Lett. A, 133 (1988), 134-139.
doi: 10.1016/0375-9601(88)90773-6.
|
[53]
|
B. Zhou and C.-J. Zhu, An application of the Schwarzian derivative, preprint, arXiv: hep-th/9907193.
|
[54]
|
B. Zhou and C.-J. Zhu, The complete brane solution in $D$-dimensional coupled gravity system, Comm. Theor. Phys., 32 (1999).
doi: 10.1088/0253-6102/32/2/173.
|