
-
Previous Article
A numerical renormalization method for quasi–conservative periodic attractors
- JCD Home
- This Issue
-
Next Article
Degree assortativity in networks of spiking neurons
Computer-assisted estimates for Birkhoff normal forms
Dipartimento di Matematica, Università degli Studi di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00133— Rome, Italy |
Birkhoff normal forms are commonly used in order to ensure the so called "effective stability" in the neighborhood of elliptic equilibrium points for Hamiltonian systems. From a theoretical point of view, this means that the eventual diffusion can be bounded for time intervals that are exponentially large with respect to the inverse of the distance of the initial conditions from such equilibrium points. Here, we focus on an approach that is suitable for practical applications: we extend a rather classical scheme of estimates for both the Birkhoff normal forms to any finite order and their remainders. This is made for providing explicit lower bounds of the stability time (that are valid for initial conditions in a fixed open ball), by using a fully rigorous computer-assisted procedure. We apply our approach in two simple contexts that are widely studied in Celestial Mechanics: the Hénon-Heiles model and the Circular Planar Restricted Three-Body Problem. In the latter case, we adapt our scheme of estimates for covering also the case of resonant Birkhoff normal forms and, in some concrete models about the motion of the Trojan asteroids, we show that it can be more advantageous with respect to the usual non-resonant ones.
References:
[1] |
K. Appel and W. Haken,
Every planar map is four colorable. I. Discharging, Illinois J. Math., 21 (1977), 429-490.
doi: 10.1215/ijm/1256049011. |
[2] |
K. Appel and W. Haken, Every Planar Map Is Four Colorable, Contemporary Mathematics, 98, American Mathematical Society, Providence, RI, 1989.
doi: 10.1090/conm/098. |
[3] |
K. Appel, W. Haken and J. Koch,
Every planar map is four colorable. Part II. Reducibility, Illinois J. Math., 21 (1977), 491-567.
doi: 10.1215/ijm/1256049012. |
[4] |
V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Russ. Math. Surv., 18 (1963).
doi: 10.1070/RM1963v018n05ABEH004130. |
[5] |
I. Balázs, J. B. van den Berg, J. Courtois, J. Dudás and J.-P. Lessard,
Computer-assisted proofs for radially symmetric solutions of PDEs, J. Comput. Dyn., 5 (2018), 61-80.
doi: 10.3934/jcd.2018003. |
[6] |
G. D. Birkhoff, Dynamical Systems, American Mathematical Society Colloquium Publications, IX, American Mathematical Society, Providence, RI, 1966. |
[7] |
A. Celletti and L. Chierchia, KAM stability and celestial mechanics, Mem. Amer. Math. Soc., 187 (2007).
doi: 10.1090/memo/0878. |
[8] |
A. Celletti and A. Giorgilli,
On the stability of the Lagrangian points in the spatial restricted problem of three bodies, Celestial Mech. Dynam. Astronom., 50 (1991), 31-38.
doi: 10.1007/BF00048985. |
[9] |
A. Celletti, A. Giorgilli and U. Locatelli,
Improved estimates on the existence of invariant tori for Hamiltonian systems, Nonlinearity, 13 (2000), 397-412.
doi: 10.1088/0951-7715/13/2/304. |
[10] |
T. M. Cherry,
On integrals developable about a singular point of a Hamiltonian system of differential equations, Proc. Camb. Phil. Soc., 22 (1924), 325-349.
doi: 10.1017/S0305004100014249. |
[11] |
T. M. Cherry,
On integrals developable about a singular point of a Hamiltonian system of differential equations Part II, Proc. Camb. Phil. Soc., 22 (1925), 510-533.
doi: 10.1017/S0305004100003224. |
[12] |
G. Contopoulos,
A Review of the "Third" Integral, Math. Engrg., 2 (2020), 472-511.
doi: 10.3934/mine.2020022. |
[13] |
C. Efthymiopoulos, A. Giorgilli and G. Contopoulos,
Nonconvergence of formal integrals. II. Improved estimates for the optimal order of truncation, J. Phys. A, 37 (2004), 10831-10858.
doi: 10.1088/0305-4470/37/45/008. |
[14] |
C. Efthymiopoulos and Z. Sándor,
Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion, Mon. Not. Roy. Astron. Soc., 364 (2005), 253-271.
doi: 10.1111/j.1365-2966.2005.09572.x. |
[15] |
J.-Ll. Figueras, A. Haro and A. Luque,
Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193.
doi: 10.1007/s10208-016-9339-3. |
[16] |
F. Gabern and À. Jorba,
A restricted four-body model for the dynamics near the Lagrangian points of the Sun-Jupiter system, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 143-182.
doi: 10.3934/dcdsb.2001.1.143. |
[17] |
F. Gabern, À. Jorba and U. Locatelli,
On the construction of the Kolmogorov normal form for the Trojan asteroids, Nonlinearity, 18 (2005), 1705-1734.
doi: 10.1088/0951-7715/18/4/017. |
[18] |
A. Giorgilli, Exponential stability of Hamiltonian systems, in Dynamical Systems. Part I, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2003, 87-198. |
[19] |
A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó,
Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem, J. Differential Equations, 77 (1989), 167-198.
doi: 10.1016/0022-0396(89)90161-7. |
[20] |
A. Giorgilli and U. Locatelli, Canonical perturbation theory for nearly integrable systems, in Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems, Proc. NATO Adv. Study Institute, 227, Cortina, Italy, 2003, 1-41.
doi: 10.1007/978-1-4020-4706-0_1. |
[21] |
A. Giorgilli, U. Locatelli and M. Sansottera,
Kolmogorov and Nekhoroshev theory for the problem of three bodies, Celestial Mech. Dynam. Astronom., 104 (2009), 159-173.
doi: 10.1007/s10569-009-9192-7. |
[22] |
A. Giorgilli, U. Locatelli and M. Sansottera,
Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; Effective stability in the light of Kolmogorov and Nekhoroshev theories, Regul. Chaotic Dyn., 22 (2017), 54-77.
doi: 10.1134/S156035471701004X. |
[23] |
A. Giorgilli and M. Sansottera, Methods of algebraic manipulation in perturbation theory, preprint, arXiv: 1303.7398. Google Scholar |
[24] |
A. Giorgilli and Ch. Skokos, On the stability of the Trojan asteroids, Astron. Astroph., 317 (1997), 254-261. Google Scholar |
[25] |
W. Gröbner and H. Knapp, Contributions to the method of Lie series, Bibliographisches Institut, Mannheim, 1967. |
[26] |
F. G. Gustavson,
Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point, Astron. J., 71 (1966), 670-686.
doi: 10.1086/110172. |
[27] |
M. Hénon, Exploration numérique du problème restreint IV: Masses égales, orbites non périodiques, Bulletin Astronomique, 3 (1966), 49-66. Google Scholar |
[28] |
M. Hénon and C. Heiles,
The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79.
doi: 10.1086/109234. |
[29] |
T. Johnson and W. Tucker,
Automated computation of robust normal forms of planar analytic vector fields, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 769-782.
doi: 10.3934/dcdsb.2009.12.769. |
[30] |
À. Jorba and J. Masdemont,
Dynamics in the center manifold of the collinear points of the restricted three body problem, Phys. D, 132 (1999), 189-213.
doi: 10.1016/S0167-2789(99)00042-1. |
[31] |
H. Koch, A. Schenkel and P. Wittwer,
Computer-assisted proofs in analysis and programming in logic: A case study, SIAM Rev., 38 (1996), 565-604.
doi: 10.1137/S0036144595284180. |
[32] |
A. N. Kolmogorov, Preservation of conditionally periodic movements with small change in the Hamilton function, in Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Lecture Notes in Phys., 93, Springer, Berlin-New York, 1979, 51-56.
doi: 10.1007/BFb0021737. |
[33] |
C. Lhotka, C. Efthymiopoulos and R. Dvorak, Nekhoroshev stability at L4 or L5 in the elliptic-restricted three-body problem -- Application to the Trojan asteroids, Mon. Not. R. Astron. Soc., 384 (2008), 1165-1177. Google Scholar |
[34] |
J. E. Littlewood, On the equilateral configuration in the restricted problem of three bodies,
Proc. London Math. Soc. (3), 9 (1959), 343–372.
doi: 10.1112/plms/s3-9.3.343. |
[35] |
J. E. Littlewood, The Lagrange configuration in celestial mechanics, Proc. London Math. Soc. (3), 9 (1959), 525–543.
doi: 10.1112/plms/s3-10.1.640-t. |
[36] |
R. S. MacKay and J. Stark,
Locally most robust circles and boundary circles for area-preserving maps, Nonlinearity, 5 (1992), 867-888.
doi: 10.1088/0951-7715/5/4/002. |
[37] |
J. Moser,
On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962 (1962), 1-20.
|
[38] |
N. N. Nekhorošev, An exponential estimates of the stability time of nearly integrable Hamiltonian systems, Uspehi Mat. Nauk, 32 (1977), 5-66,287.
doi: 10.1070/RM1977v032n06ABEH003859. |
[39] |
N. N. Nekhorošev,
An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. II, Trudy Sem. Petrovsk., 5 (1979), 5-50.
|
[40] |
R. I. Páez and U. Locatelli,
Trojans dynamics well approximated by a new Hamiltonian normal form, Mon. Not. Roy. Astron. Soc., 453 (2015), 2177-2188.
doi: 10.1093/mnras/stv1792. |
[41] |
H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier-Villars, Paris, 1892. Google Scholar |
[42] |
M. Sansottera, A. Giorgilli and T. Carletti,
High-order control for symplectic maps, Phys. D, 316 (2016), 1-15.
doi: 10.1016/j.physd.2015.10.012. |
[43] |
M. Sansottera, C. Lhotka and A. Lemaître,
Effective stability around the Cassini state in the spin-orbit problem, Celestial Mech. Dynam. Astronom., 119 (2014), 75-89.
doi: 10.1007/s10569-014-9547-6. |
[44] |
M. Sansottera, U. Locatelli and A. Giorgilli,
On the stability of the secular evolution of the planar Sun-Jupiter-Saturn-Uranus system, Math. Comput. Simulation, 88 (2013), 1-14.
doi: 10.1016/j.matcom.2010.11.018. |
[45] |
A. Schenkel, J. Wehr and P. Wittwer,
Computer-assisted proofs for fixed point problems in Sobolev spaces, Math. Phys. Electron. J., 6 (2000), 50-117.
doi: 10.1142/9789812777874_0009. |
[46] |
Ch. Skokos and A. Dokoumetzidis,
Effective stability of the Trojan asteroids, Astron. Astroph., 367 (2001), 729-736.
doi: 10.1051/0004-6361:20000456. |
[47] |
V. Szebehely, Theory of Orbits, Academic Press, New York, 1967.
doi: 10.1016/B978-0-12-395732-0.X5001-6. |
[48] |
E. T. Whittaker, On the adelphic integral of the differential equations of dynamics, Proc. Roy Soc. Edinburgh, Sect. A, 37 (1918), 95-116.
doi: 10.1017/S037016460002352X. |
show all references
References:
[1] |
K. Appel and W. Haken,
Every planar map is four colorable. I. Discharging, Illinois J. Math., 21 (1977), 429-490.
doi: 10.1215/ijm/1256049011. |
[2] |
K. Appel and W. Haken, Every Planar Map Is Four Colorable, Contemporary Mathematics, 98, American Mathematical Society, Providence, RI, 1989.
doi: 10.1090/conm/098. |
[3] |
K. Appel, W. Haken and J. Koch,
Every planar map is four colorable. Part II. Reducibility, Illinois J. Math., 21 (1977), 491-567.
doi: 10.1215/ijm/1256049012. |
[4] |
V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Russ. Math. Surv., 18 (1963).
doi: 10.1070/RM1963v018n05ABEH004130. |
[5] |
I. Balázs, J. B. van den Berg, J. Courtois, J. Dudás and J.-P. Lessard,
Computer-assisted proofs for radially symmetric solutions of PDEs, J. Comput. Dyn., 5 (2018), 61-80.
doi: 10.3934/jcd.2018003. |
[6] |
G. D. Birkhoff, Dynamical Systems, American Mathematical Society Colloquium Publications, IX, American Mathematical Society, Providence, RI, 1966. |
[7] |
A. Celletti and L. Chierchia, KAM stability and celestial mechanics, Mem. Amer. Math. Soc., 187 (2007).
doi: 10.1090/memo/0878. |
[8] |
A. Celletti and A. Giorgilli,
On the stability of the Lagrangian points in the spatial restricted problem of three bodies, Celestial Mech. Dynam. Astronom., 50 (1991), 31-38.
doi: 10.1007/BF00048985. |
[9] |
A. Celletti, A. Giorgilli and U. Locatelli,
Improved estimates on the existence of invariant tori for Hamiltonian systems, Nonlinearity, 13 (2000), 397-412.
doi: 10.1088/0951-7715/13/2/304. |
[10] |
T. M. Cherry,
On integrals developable about a singular point of a Hamiltonian system of differential equations, Proc. Camb. Phil. Soc., 22 (1924), 325-349.
doi: 10.1017/S0305004100014249. |
[11] |
T. M. Cherry,
On integrals developable about a singular point of a Hamiltonian system of differential equations Part II, Proc. Camb. Phil. Soc., 22 (1925), 510-533.
doi: 10.1017/S0305004100003224. |
[12] |
G. Contopoulos,
A Review of the "Third" Integral, Math. Engrg., 2 (2020), 472-511.
doi: 10.3934/mine.2020022. |
[13] |
C. Efthymiopoulos, A. Giorgilli and G. Contopoulos,
Nonconvergence of formal integrals. II. Improved estimates for the optimal order of truncation, J. Phys. A, 37 (2004), 10831-10858.
doi: 10.1088/0305-4470/37/45/008. |
[14] |
C. Efthymiopoulos and Z. Sándor,
Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion, Mon. Not. Roy. Astron. Soc., 364 (2005), 253-271.
doi: 10.1111/j.1365-2966.2005.09572.x. |
[15] |
J.-Ll. Figueras, A. Haro and A. Luque,
Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193.
doi: 10.1007/s10208-016-9339-3. |
[16] |
F. Gabern and À. Jorba,
A restricted four-body model for the dynamics near the Lagrangian points of the Sun-Jupiter system, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 143-182.
doi: 10.3934/dcdsb.2001.1.143. |
[17] |
F. Gabern, À. Jorba and U. Locatelli,
On the construction of the Kolmogorov normal form for the Trojan asteroids, Nonlinearity, 18 (2005), 1705-1734.
doi: 10.1088/0951-7715/18/4/017. |
[18] |
A. Giorgilli, Exponential stability of Hamiltonian systems, in Dynamical Systems. Part I, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2003, 87-198. |
[19] |
A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó,
Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem, J. Differential Equations, 77 (1989), 167-198.
doi: 10.1016/0022-0396(89)90161-7. |
[20] |
A. Giorgilli and U. Locatelli, Canonical perturbation theory for nearly integrable systems, in Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems, Proc. NATO Adv. Study Institute, 227, Cortina, Italy, 2003, 1-41.
doi: 10.1007/978-1-4020-4706-0_1. |
[21] |
A. Giorgilli, U. Locatelli and M. Sansottera,
Kolmogorov and Nekhoroshev theory for the problem of three bodies, Celestial Mech. Dynam. Astronom., 104 (2009), 159-173.
doi: 10.1007/s10569-009-9192-7. |
[22] |
A. Giorgilli, U. Locatelli and M. Sansottera,
Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; Effective stability in the light of Kolmogorov and Nekhoroshev theories, Regul. Chaotic Dyn., 22 (2017), 54-77.
doi: 10.1134/S156035471701004X. |
[23] |
A. Giorgilli and M. Sansottera, Methods of algebraic manipulation in perturbation theory, preprint, arXiv: 1303.7398. Google Scholar |
[24] |
A. Giorgilli and Ch. Skokos, On the stability of the Trojan asteroids, Astron. Astroph., 317 (1997), 254-261. Google Scholar |
[25] |
W. Gröbner and H. Knapp, Contributions to the method of Lie series, Bibliographisches Institut, Mannheim, 1967. |
[26] |
F. G. Gustavson,
Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point, Astron. J., 71 (1966), 670-686.
doi: 10.1086/110172. |
[27] |
M. Hénon, Exploration numérique du problème restreint IV: Masses égales, orbites non périodiques, Bulletin Astronomique, 3 (1966), 49-66. Google Scholar |
[28] |
M. Hénon and C. Heiles,
The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79.
doi: 10.1086/109234. |
[29] |
T. Johnson and W. Tucker,
Automated computation of robust normal forms of planar analytic vector fields, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 769-782.
doi: 10.3934/dcdsb.2009.12.769. |
[30] |
À. Jorba and J. Masdemont,
Dynamics in the center manifold of the collinear points of the restricted three body problem, Phys. D, 132 (1999), 189-213.
doi: 10.1016/S0167-2789(99)00042-1. |
[31] |
H. Koch, A. Schenkel and P. Wittwer,
Computer-assisted proofs in analysis and programming in logic: A case study, SIAM Rev., 38 (1996), 565-604.
doi: 10.1137/S0036144595284180. |
[32] |
A. N. Kolmogorov, Preservation of conditionally periodic movements with small change in the Hamilton function, in Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Lecture Notes in Phys., 93, Springer, Berlin-New York, 1979, 51-56.
doi: 10.1007/BFb0021737. |
[33] |
C. Lhotka, C. Efthymiopoulos and R. Dvorak, Nekhoroshev stability at L4 or L5 in the elliptic-restricted three-body problem -- Application to the Trojan asteroids, Mon. Not. R. Astron. Soc., 384 (2008), 1165-1177. Google Scholar |
[34] |
J. E. Littlewood, On the equilateral configuration in the restricted problem of three bodies,
Proc. London Math. Soc. (3), 9 (1959), 343–372.
doi: 10.1112/plms/s3-9.3.343. |
[35] |
J. E. Littlewood, The Lagrange configuration in celestial mechanics, Proc. London Math. Soc. (3), 9 (1959), 525–543.
doi: 10.1112/plms/s3-10.1.640-t. |
[36] |
R. S. MacKay and J. Stark,
Locally most robust circles and boundary circles for area-preserving maps, Nonlinearity, 5 (1992), 867-888.
doi: 10.1088/0951-7715/5/4/002. |
[37] |
J. Moser,
On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962 (1962), 1-20.
|
[38] |
N. N. Nekhorošev, An exponential estimates of the stability time of nearly integrable Hamiltonian systems, Uspehi Mat. Nauk, 32 (1977), 5-66,287.
doi: 10.1070/RM1977v032n06ABEH003859. |
[39] |
N. N. Nekhorošev,
An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. II, Trudy Sem. Petrovsk., 5 (1979), 5-50.
|
[40] |
R. I. Páez and U. Locatelli,
Trojans dynamics well approximated by a new Hamiltonian normal form, Mon. Not. Roy. Astron. Soc., 453 (2015), 2177-2188.
doi: 10.1093/mnras/stv1792. |
[41] |
H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier-Villars, Paris, 1892. Google Scholar |
[42] |
M. Sansottera, A. Giorgilli and T. Carletti,
High-order control for symplectic maps, Phys. D, 316 (2016), 1-15.
doi: 10.1016/j.physd.2015.10.012. |
[43] |
M. Sansottera, C. Lhotka and A. Lemaître,
Effective stability around the Cassini state in the spin-orbit problem, Celestial Mech. Dynam. Astronom., 119 (2014), 75-89.
doi: 10.1007/s10569-014-9547-6. |
[44] |
M. Sansottera, U. Locatelli and A. Giorgilli,
On the stability of the secular evolution of the planar Sun-Jupiter-Saturn-Uranus system, Math. Comput. Simulation, 88 (2013), 1-14.
doi: 10.1016/j.matcom.2010.11.018. |
[45] |
A. Schenkel, J. Wehr and P. Wittwer,
Computer-assisted proofs for fixed point problems in Sobolev spaces, Math. Phys. Electron. J., 6 (2000), 50-117.
doi: 10.1142/9789812777874_0009. |
[46] |
Ch. Skokos and A. Dokoumetzidis,
Effective stability of the Trojan asteroids, Astron. Astroph., 367 (2001), 729-736.
doi: 10.1051/0004-6361:20000456. |
[47] |
V. Szebehely, Theory of Orbits, Academic Press, New York, 1967.
doi: 10.1016/B978-0-12-395732-0.X5001-6. |
[48] |
E. T. Whittaker, On the adelphic integral of the differential equations of dynamics, Proc. Roy Soc. Edinburgh, Sect. A, 37 (1918), 95-116.
doi: 10.1017/S037016460002352X. |



| |
|||||
9.96e-04 | 1.00e-03 | 232 | 1.00e+03 | -1.82e+02 | -1.80e+02 | 1.72e+02 |
1.24e-03 | 1.25e-03 | 230 | 8.02e+02 | -1.59e+02 | -1.57e+02 | 1.49e+02 |
1.55e-03 | 1.56e-03 | 164 | 6.40e+02 | -1.42e+02 | -1.39e+02 | 1.32e+02 |
1.94e-03 | 1.95e-03 | 144 | 5.13e+02 | -1.28e+02 | -1.26e+02 | 1.18e+02 |
2.42e-03 | 2.44e-03 | 110 | 4.10e+02 | -1.16e+02 | -1.14e+02 | 1.07e+02 |
3.02e-03 | 3.05e-03 | 102 | 3.28e+02 | -1.06e+02 | -1.04e+02 | 9.73e+01 |
3.78e-03 | 3.81e-03 | 100 | 2.63e+02 | -9.63e+01 | -9.43e+01 | 8.77e+01 |
4.72e-03 | 4.77e-03 | 100 | 2.11e+02 | -8.63e+01 | -8.43e+01 | 7.79e+01 |
5.90e-03 | 5.96e-03 | 100 | 1.69e+02 | -7.63e+01 | -7.43e+01 | 6.82e+01 |
7.38e-03 | 7.45e-03 | 100 | 1.35e+02 | -6.63e+01 | -6.43e+01 | 5.84e+01 |
9.22e-03 | 9.31e-03 | 100 | 1.08e+02 | -5.64e+01 | -5.43e+01 | 4.86e+01 |
1.15e-02 | 1.16e-02 | 74 | 8.63e+01 | -4.78e+01 | -4.59e+01 | 4.05e+01 |
1.43e-02 | 1.46e-02 | 58 | 7.07e+01 | -4.18e+01 | -4.00e+01 | 3.48e+01 |
1.79e-02 | 1.82e-02 | 52 | 5.66e+01 | -3.67e+01 | -3.49e+01 | 3.00e+01 |
2.23e-02 | 2.27e-02 | 52 | 4.49e+01 | -3.13e+01 | -2.96e+01 | 2.49e+01 |
2.79e-02 | 2.84e-02 | 48 | 3.57e+01 | -2.67e+01 | -2.50e+01 | 2.05e+01 |
3.46e-02 | 3.55e-02 | 38 | 2.84e+01 | -2.27e+01 | -2.11e+01 | 1.68e+01 |
4.30e-02 | 4.44e-02 | 30 | 2.32e+01 | -1.97e+01 | -1.82e+01 | 1.43e+01 |
5.36e-02 | 5.55e-02 | 26 | 1.86e+01 | -1.71e+01 | -1.56e+01 | 1.19e+01 |
6.70e-02 | 6.94e-02 | 26 | 1.49e+01 | -1.42e+01 | -1.28e+01 | 9.30e+00 |
8.37e-02 | 8.67e-02 | 26 | 1.15e+01 | -1.14e+01 | -9.94e+00 | 6.65e+00 |
| |
|||||
9.96e-04 | 1.00e-03 | 232 | 1.00e+03 | -1.82e+02 | -1.80e+02 | 1.72e+02 |
1.24e-03 | 1.25e-03 | 230 | 8.02e+02 | -1.59e+02 | -1.57e+02 | 1.49e+02 |
1.55e-03 | 1.56e-03 | 164 | 6.40e+02 | -1.42e+02 | -1.39e+02 | 1.32e+02 |
1.94e-03 | 1.95e-03 | 144 | 5.13e+02 | -1.28e+02 | -1.26e+02 | 1.18e+02 |
2.42e-03 | 2.44e-03 | 110 | 4.10e+02 | -1.16e+02 | -1.14e+02 | 1.07e+02 |
3.02e-03 | 3.05e-03 | 102 | 3.28e+02 | -1.06e+02 | -1.04e+02 | 9.73e+01 |
3.78e-03 | 3.81e-03 | 100 | 2.63e+02 | -9.63e+01 | -9.43e+01 | 8.77e+01 |
4.72e-03 | 4.77e-03 | 100 | 2.11e+02 | -8.63e+01 | -8.43e+01 | 7.79e+01 |
5.90e-03 | 5.96e-03 | 100 | 1.69e+02 | -7.63e+01 | -7.43e+01 | 6.82e+01 |
7.38e-03 | 7.45e-03 | 100 | 1.35e+02 | -6.63e+01 | -6.43e+01 | 5.84e+01 |
9.22e-03 | 9.31e-03 | 100 | 1.08e+02 | -5.64e+01 | -5.43e+01 | 4.86e+01 |
1.15e-02 | 1.16e-02 | 74 | 8.63e+01 | -4.78e+01 | -4.59e+01 | 4.05e+01 |
1.43e-02 | 1.46e-02 | 58 | 7.07e+01 | -4.18e+01 | -4.00e+01 | 3.48e+01 |
1.79e-02 | 1.82e-02 | 52 | 5.66e+01 | -3.67e+01 | -3.49e+01 | 3.00e+01 |
2.23e-02 | 2.27e-02 | 52 | 4.49e+01 | -3.13e+01 | -2.96e+01 | 2.49e+01 |
2.79e-02 | 2.84e-02 | 48 | 3.57e+01 | -2.67e+01 | -2.50e+01 | 2.05e+01 |
3.46e-02 | 3.55e-02 | 38 | 2.84e+01 | -2.27e+01 | -2.11e+01 | 1.68e+01 |
4.30e-02 | 4.44e-02 | 30 | 2.32e+01 | -1.97e+01 | -1.82e+01 | 1.43e+01 |
5.36e-02 | 5.55e-02 | 26 | 1.86e+01 | -1.71e+01 | -1.56e+01 | 1.19e+01 |
6.70e-02 | 6.94e-02 | 26 | 1.49e+01 | -1.42e+01 | -1.28e+01 | 9.30e+00 |
8.37e-02 | 8.67e-02 | 26 | 1.15e+01 | -1.14e+01 | -9.94e+00 | 6.65e+00 |
|
|
|||||
2.49e-04 | 2.59e-04 | 6.36e+08 | 2.05e-04 | 1.83e-04 | 2.07e-04 | 5.93e+08 |
2.47e-04 | 2.57e-04 | 1.01e+09 | 2.02e-04 | 1.80e-04 | 2.04e-04 | 7.23e+08 |
|
|
|||||
2.49e-04 | 2.59e-04 | 6.36e+08 | 2.05e-04 | 1.83e-04 | 2.07e-04 | 5.93e+08 |
2.47e-04 | 2.57e-04 | 1.01e+09 | 2.02e-04 | 1.80e-04 | 2.04e-04 | 7.23e+08 |
|
|
|||||
8.30e-05 | 8.80e-05 | 6.03e+07 | 9.23e-04 | 7.57e-04 | 9.24e-04 | 7.18e+07 |
8.13e-05 | 8.63e-05 | 1.44e+08 | 9.04e-04 | 7.44e-04 | 9.05e-04 | 1.27e+08 |
|
|
|||||
8.30e-05 | 8.80e-05 | 6.03e+07 | 9.23e-04 | 7.57e-04 | 9.24e-04 | 7.18e+07 |
8.13e-05 | 8.63e-05 | 1.44e+08 | 9.04e-04 | 7.44e-04 | 9.05e-04 | 1.27e+08 |
|
|
|||||
7.36e-06 | 7.84e-06 | 3.09e+09 | 1.28e-04 | 1.08e-04 | 1.28e-04 | 3.87e+09 |
7.22e-06 | 7.69e-06 | 6.15e+09 | 1.27e-04 | 1.07e-04 | 1.27e-04 | 5.86e+09 |
|
|
|||||
7.36e-06 | 7.84e-06 | 3.09e+09 | 1.28e-04 | 1.08e-04 | 1.28e-04 | 3.87e+09 |
7.22e-06 | 7.69e-06 | 6.15e+09 | 1.27e-04 | 1.07e-04 | 1.27e-04 | 5.86e+09 |
|
|
|||||
6.00e-07 | 6.37e-07 | 3.10e+12 | 1.18e-05 | 1.10e-05 | 1.18e-05 | 3.50e+12 |
5.89e-07 | 6.24e-07 | 5.40e+12 | 1.15e-05 | 1.08e-05 | 1.15e-05 | 6.83e+12 |
|
|
|||||
6.00e-07 | 6.37e-07 | 3.10e+12 | 1.18e-05 | 1.10e-05 | 1.18e-05 | 3.50e+12 |
5.89e-07 | 6.24e-07 | 5.40e+12 | 1.15e-05 | 1.08e-05 | 1.15e-05 | 6.83e+12 |
Jupiter | 0.73 | |||
Uranus | 9.12 | |||
Mars | 14.67 | |||
Janus | 18.33 |
Jupiter | 0.73 | |||
Uranus | 9.12 | |||
Mars | 14.67 | |||
Janus | 18.33 |
[1] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[2] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[3] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[4] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2021001 |
[5] |
Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345 |
[6] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[7] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[8] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[9] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[10] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[11] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[12] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[13] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[14] |
Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020349 |
[15] |
Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383 |
[16] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[17] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
[18] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[19] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[20] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]