[1]
|
K. Appel and W. Haken, Every planar map is four colorable. I. Discharging, Illinois J. Math., 21 (1977), 429-490.
doi: 10.1215/ijm/1256049011.
|
[2]
|
K. Appel and W. Haken, Every Planar Map Is Four Colorable, Contemporary Mathematics, 98, American Mathematical Society, Providence, RI, 1989.
doi: 10.1090/conm/098.
|
[3]
|
K. Appel, W. Haken and J. Koch, Every planar map is four colorable. Part II. Reducibility, Illinois J. Math., 21 (1977), 491-567.
doi: 10.1215/ijm/1256049012.
|
[4]
|
V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Russ. Math. Surv., 18 (1963).
doi: 10.1070/RM1963v018n05ABEH004130.
|
[5]
|
I. Balázs, J. B. van den Berg, J. Courtois, J. Dudás and J.-P. Lessard, et al., Computer-assisted proofs for radially symmetric solutions of PDEs, J. Comput. Dyn., 5 (2018), 61-80.
doi: 10.3934/jcd.2018003.
|
[6]
|
G. D. Birkhoff, Dynamical Systems, American Mathematical Society Colloquium Publications, IX, American Mathematical Society, Providence, RI, 1966.
|
[7]
|
A. Celletti and L. Chierchia, KAM stability and celestial mechanics, Mem. Amer. Math. Soc., 187 (2007).
doi: 10.1090/memo/0878.
|
[8]
|
A. Celletti and A. Giorgilli, On the stability of the Lagrangian points in the spatial restricted problem of three bodies, Celestial Mech. Dynam. Astronom., 50 (1991), 31-38.
doi: 10.1007/BF00048985.
|
[9]
|
A. Celletti, A. Giorgilli and U. Locatelli, Improved estimates on the existence of invariant tori for Hamiltonian systems, Nonlinearity, 13 (2000), 397-412.
doi: 10.1088/0951-7715/13/2/304.
|
[10]
|
T. M. Cherry, On integrals developable about a singular point of a Hamiltonian system of differential equations, Proc. Camb. Phil. Soc., 22 (1924), 325-349.
doi: 10.1017/S0305004100014249.
|
[11]
|
T. M. Cherry, On integrals developable about a singular point of a Hamiltonian system of differential equations Part II, Proc. Camb. Phil. Soc., 22 (1925), 510-533.
doi: 10.1017/S0305004100003224.
|
[12]
|
G. Contopoulos, A Review of the "Third" Integral, Math. Engrg., 2 (2020), 472-511.
doi: 10.3934/mine.2020022.
|
[13]
|
C. Efthymiopoulos, A. Giorgilli and G. Contopoulos, Nonconvergence of formal integrals. II. Improved estimates for the optimal order of truncation, J. Phys. A, 37 (2004), 10831-10858.
doi: 10.1088/0305-4470/37/45/008.
|
[14]
|
C. Efthymiopoulos and Z. Sándor, Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion, Mon. Not. Roy. Astron. Soc., 364 (2005), 253-271.
doi: 10.1111/j.1365-2966.2005.09572.x.
|
[15]
|
J.-Ll. Figueras, A. Haro and A. Luque, Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193.
doi: 10.1007/s10208-016-9339-3.
|
[16]
|
F. Gabern and À. Jorba, A restricted four-body model for the dynamics near the Lagrangian points of the Sun-Jupiter system, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 143-182.
doi: 10.3934/dcdsb.2001.1.143.
|
[17]
|
F. Gabern, À. Jorba and U. Locatelli, On the construction of the Kolmogorov normal form for the Trojan asteroids, Nonlinearity, 18 (2005), 1705-1734.
doi: 10.1088/0951-7715/18/4/017.
|
[18]
|
A. Giorgilli, Exponential stability of Hamiltonian systems, in Dynamical Systems. Part I, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2003, 87-198.
|
[19]
|
A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem, J. Differential Equations, 77 (1989), 167-198.
doi: 10.1016/0022-0396(89)90161-7.
|
[20]
|
A. Giorgilli and U. Locatelli, Canonical perturbation theory for nearly integrable systems, in Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems, Proc. NATO Adv. Study Institute, 227, Cortina, Italy, 2003, 1-41.
doi: 10.1007/978-1-4020-4706-0_1.
|
[21]
|
A. Giorgilli, U. Locatelli and M. Sansottera, Kolmogorov and Nekhoroshev theory for the problem of three bodies, Celestial Mech. Dynam. Astronom., 104 (2009), 159-173.
doi: 10.1007/s10569-009-9192-7.
|
[22]
|
A. Giorgilli, U. Locatelli and M. Sansottera, Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; Effective stability in the light of Kolmogorov and Nekhoroshev theories, Regul. Chaotic Dyn., 22 (2017), 54-77.
doi: 10.1134/S156035471701004X.
|
[23]
|
A. Giorgilli and M. Sansottera, Methods of algebraic manipulation in perturbation theory, preprint, arXiv: 1303.7398.
|
[24]
|
A. Giorgilli and Ch. Skokos, On the stability of the Trojan asteroids, Astron. Astroph., 317 (1997), 254-261.
|
[25]
|
W. Gröbner and H. Knapp, Contributions to the method of Lie series, Bibliographisches Institut, Mannheim, 1967.
|
[26]
|
F. G. Gustavson, Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point, Astron. J., 71 (1966), 670-686.
doi: 10.1086/110172.
|
[27]
|
M. Hénon, Exploration numérique du problème restreint IV: Masses égales, orbites non périodiques, Bulletin Astronomique, 3 (1966), 49-66.
|
[28]
|
M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79.
doi: 10.1086/109234.
|
[29]
|
T. Johnson and W. Tucker, Automated computation of robust normal forms of planar analytic vector fields, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 769-782.
doi: 10.3934/dcdsb.2009.12.769.
|
[30]
|
À. Jorba and J. Masdemont, Dynamics in the center manifold of the collinear points of the restricted three body problem, Phys. D, 132 (1999), 189-213.
doi: 10.1016/S0167-2789(99)00042-1.
|
[31]
|
H. Koch, A. Schenkel and P. Wittwer, Computer-assisted proofs in analysis and programming in logic: A case study, SIAM Rev., 38 (1996), 565-604.
doi: 10.1137/S0036144595284180.
|
[32]
|
A. N. Kolmogorov, Preservation of conditionally periodic movements with small change in the Hamilton function, in Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Lecture Notes in Phys., 93, Springer, Berlin-New York, 1979, 51-56.
doi: 10.1007/BFb0021737.
|
[33]
|
C. Lhotka, C. Efthymiopoulos and R. Dvorak, Nekhoroshev stability at L4 or L5 in the elliptic-restricted three-body problem -- Application to the Trojan asteroids, Mon. Not. R. Astron. Soc., 384 (2008), 1165-1177.
|
[34]
|
J. E. Littlewood, On the equilateral configuration in the restricted problem of three bodies,
Proc. London Math. Soc. (3), 9 (1959), 343–372.
doi: 10.1112/plms/s3-9.3.343.
|
[35]
|
J. E. Littlewood, The Lagrange configuration in celestial mechanics, Proc. London Math. Soc. (3), 9 (1959), 525–543.
doi: 10.1112/plms/s3-10.1.640-t.
|
[36]
|
R. S. MacKay and J. Stark, Locally most robust circles and boundary circles for area-preserving maps, Nonlinearity, 5 (1992), 867-888.
doi: 10.1088/0951-7715/5/4/002.
|
[37]
|
J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962 (1962), 1-20.
|
[38]
|
N. N. Nekhorošev, An exponential estimates of the stability time of nearly integrable Hamiltonian systems, Uspehi Mat. Nauk, 32 (1977), 5-66,287.
doi: 10.1070/RM1977v032n06ABEH003859.
|
[39]
|
N. N. Nekhorošev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. II, Trudy Sem. Petrovsk., 5 (1979), 5-50.
|
[40]
|
R. I. Páez and U. Locatelli, Trojans dynamics well approximated by a new Hamiltonian normal form, Mon. Not. Roy. Astron. Soc., 453 (2015), 2177-2188.
doi: 10.1093/mnras/stv1792.
|
[41]
|
H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier-Villars, Paris, 1892.
|
[42]
|
M. Sansottera, A. Giorgilli and T. Carletti, High-order control for symplectic maps, Phys. D, 316 (2016), 1-15.
doi: 10.1016/j.physd.2015.10.012.
|
[43]
|
M. Sansottera, C. Lhotka and A. Lemaître, Effective stability around the Cassini state in the spin-orbit problem, Celestial Mech. Dynam. Astronom., 119 (2014), 75-89.
doi: 10.1007/s10569-014-9547-6.
|
[44]
|
M. Sansottera, U. Locatelli and A. Giorgilli, On the stability of the secular evolution of the planar Sun-Jupiter-Saturn-Uranus system, Math. Comput. Simulation, 88 (2013), 1-14.
doi: 10.1016/j.matcom.2010.11.018.
|
[45]
|
A. Schenkel, J. Wehr and P. Wittwer, Computer-assisted proofs for fixed point problems in Sobolev spaces, Math. Phys. Electron. J., 6 (2000), 50-117.
doi: 10.1142/9789812777874_0009.
|
[46]
|
Ch. Skokos and A. Dokoumetzidis, Effective stability of the Trojan asteroids, Astron. Astroph., 367 (2001), 729-736.
doi: 10.1051/0004-6361:20000456.
|
[47]
|
V. Szebehely, Theory of Orbits, Academic Press, New York, 1967.
doi: 10.1016/B978-0-12-395732-0.X5001-6.
|
[48]
|
E. T. Whittaker, On the adelphic integral of the differential equations of dynamics, Proc. Roy Soc. Edinburgh, Sect. A, 37 (1918), 95-116.
doi: 10.1017/S037016460002352X.
|