
- Previous Article
- JCD Home
- This Issue
-
Next Article
Computing connecting orbits to infinity associated with a homoclinic flip bifurcation
Manifold learning for accelerating coarse-grained optimization
1. | Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA |
2. | Department of Applied Mathematics and Statistics (AMS), Johns Hopkins University, Baltimore, MD 21218, USA |
3. | Department of Mathematics, Imperial College London, London SW7 2AZ, UK |
4. | Department of Chemical and Biomolecular Engineering & AMS, Johns Hopkins University, Baltimore, MD 21218, USA |
Algorithms proposed for solving high-dimensional optimization problems with no derivative information frequently encounter the "curse of dimensionality, " becoming ineffective as the dimension of the parameter space grows. One feature of a subclass of such problems that are effectively low-dimensional is that only a few parameters (or combinations thereof) are important for the optimization and must be explored in detail. Knowing these parameters/combinations in advance would greatly simplify the problem and its solution. We propose the data-driven construction of an effective (coarse-grained, "trend") optimizer, based on data obtained from ensembles of brief simulation bursts with an "inner" optimization algorithm, that has the potential to accelerate the exploration of the parameter space. The trajectories of this "effective optimizer" quickly become attracted onto a slow manifold parameterized by the few relevant parameter combinations. We obtain the parameterization of this low-dimensional, effective optimization manifold on the fly using data mining/manifold learning techniques on the results of simulation (inner optimizer iteration) burst ensembles and exploit it locally to "jump" forward along this manifold. As a result, we can bias the exploration of the parameter space towards the few, important directions and, through this "wrapper algorithm, " speed up the convergence of traditional optimization algorithms.
References:
[1] |
Y. Aït-Sahalia,
Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach, Econometrica, 70 (2002), 223-262.
doi: 10.1111/1468-0262.00274. |
[2] |
Y. Aït-Sahalia,
Closed-form likelihood expansions for multivariate diffusions, Ann. Statist., 36 (2008), 906-937.
doi: 10.1214/009053607000000622. |
[3] |
R. Barton, Metamodeling: A state of the art review, Proc. Winter Simul. Conf., (1994), 237–244.
doi: 10.1109/WSC.1994.717134. |
[4] |
K. Chan, G. Karolyi, F. Longstaff and A. Sanders,
An empirical comparison of alternative models of the short-term interest rate, J. Finance, 47 (1992), 1209-1227.
doi: 10.1111/j.1540-6261.1992.tb04011.x. |
[5] |
E. Chiavazzo, C. Gear, C. Dsilva, N. Rabin and I. Kevrekidis,
Reduced models in chemical kinetics via nonlinear data-mining, Processes, 2 (2014), 112-140.
doi: 10.3390/pr2010112. |
[6] |
R. R. Coifman and S. Lafon,
Diffusion maps, Appl. Comput. Harmon. Anal., 21 (2006), 5-30.
doi: 10.1016/j.acha.2006.04.006. |
[7] |
R. R. Coifman and S. Lafon,
Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions, Appl. Comput. Harmon. Anal., 21 (2006), 31-52.
doi: 10.1016/j.acha.2005.07.005. |
[8] |
R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner and S. Zucker,
Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. Nat. Acad. Sci. USA, 102 (2005), 7426-7431.
doi: 10.1073/pnas.0500334102. |
[9] |
A. R. Conn, N. I. M. Gould and P. L. Toint, Trust-Region Methods, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719857. |
[10] |
A. R. Conn, K. Scheinberg and L. N. Vicente, Introduction to Derivative-Free Optimization, MPS/SIAM Series on Optimization, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009.
doi: 10.1137/1.9780898718768. |
[11] |
C. J. Dsilva, R. Talmon, R. R. Coifman and I. G. Kevrekidis,
Parsimonious representation of nonlinear dynamical systems through manifold learning: A chemotaxis case study, Appl. Comput. Harmon. Anal., 44 (2018), 759-773.
doi: 10.1016/j.acha.2015.06.008. |
[12] |
C. J. Dsilva, R. Talmon, N. Rabin, R. R. Coifman and I. G. Kevrekidis, Nonlinear intrinsic variables and state reconstruction in multiscale simulations, J. Chemical Phys., 139 (2013).
doi: 10.1063/1.4828457. |
[13] |
A. Duncan, G. Pavliotis and K. Zygalakis, Nonreversible langevin samplers: Splitting schemes, analysis and implementation, preprint, arXiv: 1701.04247. Google Scholar |
[14] |
R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, Proc. Sixth Internat. Symposium Micro Machine Human Science, Nagoya, Japan, 1995, 39–43.
doi: 10.1109/MHS.1995.494215. |
[15] |
M. Fathi and G. Stoltz,
Improving dynamical properties of metropolized discretizations of overdamped Langevin dynamics, Numer. Math., 136 (2017), 545-602.
doi: 10.1007/s00211-016-0849-3. |
[16] |
C. W. Gear, D. Givon and I. G. Kevrekidis,
Computing on virtual slow manifolds of fast stochastic systems, JNAIAM. J. Numer. Anal. Ind. Appl. Math., 5 (2010), 61-72.
|
[17] |
C. W. Gear and I. G. Kevrekidis,
Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum, SIAM J. Sci. Comput., 24 (2003), 1091-1106.
doi: 10.1137/S1064827501388157. |
[18] |
S. Geman and C.-R. Hwang,
Diffusions for global optimization, SIAM J. Control Optim., 24 (1986), 1031-1043.
doi: 10.1137/0324060. |
[19] |
B. Gidas, Global optimization via the langevin equation, 24th IEEE Conference on Decision and Control, Ft. Lauderdale, FL, 1985,774–778.
doi: 10.1109/CDC.1985.268602. |
[20] |
J. Gradišek, S. Siegert, R. Friedrich and I. Grabec, Analysis of time series from stochastic processes, Phys. Rev. E, 62 (2000). Google Scholar |
[21] |
L. Hansen,
Large sample properties of generalized method of moments estimators, Econometrica, 50 (1982), 1029-1054.
doi: 10.2307/1912775. |
[22] |
J. H. Holland, Adaptation in Natural and Artificial Systems. An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press,
Ann Arbor, Mich., 1975. |
[23] |
R. Hooke and T. Jeeves,
"Direct search" solution of numerical and statistical problems, J. ACM, 8 (1961), 212-229.
doi: 10.1145/321062.321069. |
[24] |
W. Huyer and A. Neumaier,
Global optimization by multilevel coordinate search, J. Global Optim., 14 (1999), 331-355.
doi: 10.1023/A:1008382309369. |
[25] |
I. T. Jolliffe, Principal Component Analysis, Springer Series in Statistics. Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4757-1904-8. |
[26] |
D. R. Jones,
A taxonomy of global optimization methods based on response surfaces, J. Global Optim., 21 (2001), 345-383.
doi: 10.1023/A:1012771025575. |
[27] |
D. R. Jones, C. D. Perttunen and B. E. Stuckman,
Lipschitzian optimization without the Lipschitz constant, J. Optim. Theory Appl., 79 (1993), 157-181.
doi: 10.1007/BF00941892. |
[28] |
S. Kalliadasis, S. Krumscheid and G. A. Pavliotis,
A new framework for extracting coarse-grained models from time series with multiscale structure, J. Comput. Phys., 296 (2015), 314-328.
doi: 10.1016/j.jcp.2015.05.002. |
[29] |
C. Kelley, Iterative Methods for Optimization, Frontiers in Applied Mathematics, 18, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
doi: 10.1137/1.9781611970920. |
[30] |
I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg and C. Theodoropoulos,
Equation-free, coarse-grained multiscale computation: Enabling mocroscopic simulators to perform system-level analysis, Commun. Math. Sci., 1 (2003), 715-762.
doi: 10.4310/CMS.2003.v1.n4.a5. |
[31] |
S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi,
Optimization by simulated annealing, Science, 220 (1983), 671-680.
doi: 10.1126/science.220.4598.671. |
[32] |
S. Krumscheid, G. A. Pavliotis and S. Kalliadasis,
Semiparametric drift and diffusion estimation for multiscale diffusions, Multiscale Model. Simul., 11 (2013), 442-473.
doi: 10.1137/110854485. |
[33] |
S. Krumscheid, M. Pradas, G. Pavliotis and S. Kalliadasis, Data-driven coarse graining in action: Modeling and prediction of complex systems, Phys. Rev. E, 92 (2015).
doi: 10.1103/PhysRevE.92.042139. |
[34] |
S. Lafon, Y. Keller and R. Coifman,
Data fusion and multicue data matching by diffusion maps, IEEE Transac. Pattern Anal. Machine Intelligence, 28 (2006), 1784-1797.
doi: 10.1109/TPAMI.2006.223. |
[35] |
G. Li, C. Rosenthal and H. Rabitz,
High dimensional model representations, J. Phys. Chem. A, 105 (2001), 7765-7777.
doi: 10.1021/jp010450t. |
[36] |
M. Locatelli, Simulated annealing algorithms for continuous global optimization, in Handbook of Global Optimization, Nonconvex Optim. Appl., 62, Kluwer Acad. Publ., Dordrecht, 2002,179–229.
doi: 10.1007/978-1-4757-5362-2_6. |
[37] |
I. Melbourne and A. M. Stuart,
A note on diffusion limits of chaotic skew-product flows, Nonlinearity, 24 (2011), 1361-1367.
doi: 10.1088/0951-7715/24/4/018. |
[38] |
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller,
Equation of state calculations by fast computing machines, J. Phys. Chem., 21 (1953), 1087-1092.
doi: 10.2172/4390578. |
[39] |
M. Montgomery, R. Meglen and N. Damrauer,
General method for the dimension reduction of adaptive control experiments, J. Phys. Chem. A, 110 (2006), 6391-6394.
doi: 10.1021/jp061160l. |
[40] |
M. Montgomery, R. Meglen and N. Damrauer,
General method for reducing adaptive laser pulse-shaping experiments to a single control variable, J. Phys. Chem. A, 111 (2007), 5126-5129.
doi: 10.1021/jp073132o. |
[41] |
J. A. Nelder and R. Mead,
A simplex method for function minimization, Comput. J., 7 (1965), 308-313.
doi: 10.1093/comjnl/7.4.308. |
[42] |
B. Øksendal, Stochastic Differential Equations, Universitext, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-14394-6. |
[43] |
A. Papavasiliou, Particle filters for multiscale diffusions, in Conference Oxford sur les méthodes de Monte Carlo séquentielles, ESAIM Proc., 19, EDP Sci., Les Ulis, 2007,108–114.
doi: 10.1051/proc:071914. |
[44] |
G. A. Pavliotis, Stochastic Processes and Applications. Diffusion Processes, the Fokker-Planck and Langevin Equations, Texts in Applied Mathematics, 60, Springer, New York, 2014.
doi: 10.1007/978-1-4939-1323-7. |
[45] |
G. A. Pavliotis and A. M. Stuart,
Parameter estimation for multiscale diffusions, J. Stat. Phys., 127 (2007), 741-781.
doi: 10.1007/s10955-007-9300-6. |
[46] |
L. M. Rios and N. V. Sahinidis,
Derivative-free optimization: A review of algorithms and comparison of software implementations, J. Global Optim., 56 (2013), 1247-1293.
doi: 10.1007/s10898-012-9951-y. |
[47] |
J. Roslund and H. Rabitz, Dynamic dimensionality identification for quantum control, Phys. Rev. Lett., 112 (2014).
doi: 10.1103/PhysRevLett.112.143001. |
[48] |
C. Schillings and A. M. Stuart,
Analysis of the ensemble Kalman filter for inverse problems, SIAM J. Numer. Anal., 55 (2017), 1264-1290.
doi: 10.1137/16M105959X. |
[49] |
S. Shan and G. G. Wang,
Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions, Struct. Multidiscip. Optim., 41 (2010), 219-241.
doi: 10.1007/s00158-009-0420-2. |
[50] |
A. Singer and R. R. Coifman,
Non-linear independent component analysis with diffusion maps, Appl. Comput. Harmon. Anal., 25 (2008), 226-239.
doi: 10.1016/j.acha.2007.11.001. |
[51] |
E. Vanden-Eijnden,
Numerical techniques for multi-scale dynamical systems with stochastic effects, Commun. Math. Sci., 1 (2003), 385-391.
doi: 10.4310/CMS.2003.v1.n2.a11. |
[52] |
E. Weinan, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden,
Heterogeneous multiscale methods: A review, Commun. Comput. Phys., 2 (2007), 367-450.
|
show all references
References:
[1] |
Y. Aït-Sahalia,
Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach, Econometrica, 70 (2002), 223-262.
doi: 10.1111/1468-0262.00274. |
[2] |
Y. Aït-Sahalia,
Closed-form likelihood expansions for multivariate diffusions, Ann. Statist., 36 (2008), 906-937.
doi: 10.1214/009053607000000622. |
[3] |
R. Barton, Metamodeling: A state of the art review, Proc. Winter Simul. Conf., (1994), 237–244.
doi: 10.1109/WSC.1994.717134. |
[4] |
K. Chan, G. Karolyi, F. Longstaff and A. Sanders,
An empirical comparison of alternative models of the short-term interest rate, J. Finance, 47 (1992), 1209-1227.
doi: 10.1111/j.1540-6261.1992.tb04011.x. |
[5] |
E. Chiavazzo, C. Gear, C. Dsilva, N. Rabin and I. Kevrekidis,
Reduced models in chemical kinetics via nonlinear data-mining, Processes, 2 (2014), 112-140.
doi: 10.3390/pr2010112. |
[6] |
R. R. Coifman and S. Lafon,
Diffusion maps, Appl. Comput. Harmon. Anal., 21 (2006), 5-30.
doi: 10.1016/j.acha.2006.04.006. |
[7] |
R. R. Coifman and S. Lafon,
Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions, Appl. Comput. Harmon. Anal., 21 (2006), 31-52.
doi: 10.1016/j.acha.2005.07.005. |
[8] |
R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner and S. Zucker,
Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. Nat. Acad. Sci. USA, 102 (2005), 7426-7431.
doi: 10.1073/pnas.0500334102. |
[9] |
A. R. Conn, N. I. M. Gould and P. L. Toint, Trust-Region Methods, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719857. |
[10] |
A. R. Conn, K. Scheinberg and L. N. Vicente, Introduction to Derivative-Free Optimization, MPS/SIAM Series on Optimization, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009.
doi: 10.1137/1.9780898718768. |
[11] |
C. J. Dsilva, R. Talmon, R. R. Coifman and I. G. Kevrekidis,
Parsimonious representation of nonlinear dynamical systems through manifold learning: A chemotaxis case study, Appl. Comput. Harmon. Anal., 44 (2018), 759-773.
doi: 10.1016/j.acha.2015.06.008. |
[12] |
C. J. Dsilva, R. Talmon, N. Rabin, R. R. Coifman and I. G. Kevrekidis, Nonlinear intrinsic variables and state reconstruction in multiscale simulations, J. Chemical Phys., 139 (2013).
doi: 10.1063/1.4828457. |
[13] |
A. Duncan, G. Pavliotis and K. Zygalakis, Nonreversible langevin samplers: Splitting schemes, analysis and implementation, preprint, arXiv: 1701.04247. Google Scholar |
[14] |
R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, Proc. Sixth Internat. Symposium Micro Machine Human Science, Nagoya, Japan, 1995, 39–43.
doi: 10.1109/MHS.1995.494215. |
[15] |
M. Fathi and G. Stoltz,
Improving dynamical properties of metropolized discretizations of overdamped Langevin dynamics, Numer. Math., 136 (2017), 545-602.
doi: 10.1007/s00211-016-0849-3. |
[16] |
C. W. Gear, D. Givon and I. G. Kevrekidis,
Computing on virtual slow manifolds of fast stochastic systems, JNAIAM. J. Numer. Anal. Ind. Appl. Math., 5 (2010), 61-72.
|
[17] |
C. W. Gear and I. G. Kevrekidis,
Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum, SIAM J. Sci. Comput., 24 (2003), 1091-1106.
doi: 10.1137/S1064827501388157. |
[18] |
S. Geman and C.-R. Hwang,
Diffusions for global optimization, SIAM J. Control Optim., 24 (1986), 1031-1043.
doi: 10.1137/0324060. |
[19] |
B. Gidas, Global optimization via the langevin equation, 24th IEEE Conference on Decision and Control, Ft. Lauderdale, FL, 1985,774–778.
doi: 10.1109/CDC.1985.268602. |
[20] |
J. Gradišek, S. Siegert, R. Friedrich and I. Grabec, Analysis of time series from stochastic processes, Phys. Rev. E, 62 (2000). Google Scholar |
[21] |
L. Hansen,
Large sample properties of generalized method of moments estimators, Econometrica, 50 (1982), 1029-1054.
doi: 10.2307/1912775. |
[22] |
J. H. Holland, Adaptation in Natural and Artificial Systems. An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press,
Ann Arbor, Mich., 1975. |
[23] |
R. Hooke and T. Jeeves,
"Direct search" solution of numerical and statistical problems, J. ACM, 8 (1961), 212-229.
doi: 10.1145/321062.321069. |
[24] |
W. Huyer and A. Neumaier,
Global optimization by multilevel coordinate search, J. Global Optim., 14 (1999), 331-355.
doi: 10.1023/A:1008382309369. |
[25] |
I. T. Jolliffe, Principal Component Analysis, Springer Series in Statistics. Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4757-1904-8. |
[26] |
D. R. Jones,
A taxonomy of global optimization methods based on response surfaces, J. Global Optim., 21 (2001), 345-383.
doi: 10.1023/A:1012771025575. |
[27] |
D. R. Jones, C. D. Perttunen and B. E. Stuckman,
Lipschitzian optimization without the Lipschitz constant, J. Optim. Theory Appl., 79 (1993), 157-181.
doi: 10.1007/BF00941892. |
[28] |
S. Kalliadasis, S. Krumscheid and G. A. Pavliotis,
A new framework for extracting coarse-grained models from time series with multiscale structure, J. Comput. Phys., 296 (2015), 314-328.
doi: 10.1016/j.jcp.2015.05.002. |
[29] |
C. Kelley, Iterative Methods for Optimization, Frontiers in Applied Mathematics, 18, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
doi: 10.1137/1.9781611970920. |
[30] |
I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg and C. Theodoropoulos,
Equation-free, coarse-grained multiscale computation: Enabling mocroscopic simulators to perform system-level analysis, Commun. Math. Sci., 1 (2003), 715-762.
doi: 10.4310/CMS.2003.v1.n4.a5. |
[31] |
S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi,
Optimization by simulated annealing, Science, 220 (1983), 671-680.
doi: 10.1126/science.220.4598.671. |
[32] |
S. Krumscheid, G. A. Pavliotis and S. Kalliadasis,
Semiparametric drift and diffusion estimation for multiscale diffusions, Multiscale Model. Simul., 11 (2013), 442-473.
doi: 10.1137/110854485. |
[33] |
S. Krumscheid, M. Pradas, G. Pavliotis and S. Kalliadasis, Data-driven coarse graining in action: Modeling and prediction of complex systems, Phys. Rev. E, 92 (2015).
doi: 10.1103/PhysRevE.92.042139. |
[34] |
S. Lafon, Y. Keller and R. Coifman,
Data fusion and multicue data matching by diffusion maps, IEEE Transac. Pattern Anal. Machine Intelligence, 28 (2006), 1784-1797.
doi: 10.1109/TPAMI.2006.223. |
[35] |
G. Li, C. Rosenthal and H. Rabitz,
High dimensional model representations, J. Phys. Chem. A, 105 (2001), 7765-7777.
doi: 10.1021/jp010450t. |
[36] |
M. Locatelli, Simulated annealing algorithms for continuous global optimization, in Handbook of Global Optimization, Nonconvex Optim. Appl., 62, Kluwer Acad. Publ., Dordrecht, 2002,179–229.
doi: 10.1007/978-1-4757-5362-2_6. |
[37] |
I. Melbourne and A. M. Stuart,
A note on diffusion limits of chaotic skew-product flows, Nonlinearity, 24 (2011), 1361-1367.
doi: 10.1088/0951-7715/24/4/018. |
[38] |
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller,
Equation of state calculations by fast computing machines, J. Phys. Chem., 21 (1953), 1087-1092.
doi: 10.2172/4390578. |
[39] |
M. Montgomery, R. Meglen and N. Damrauer,
General method for the dimension reduction of adaptive control experiments, J. Phys. Chem. A, 110 (2006), 6391-6394.
doi: 10.1021/jp061160l. |
[40] |
M. Montgomery, R. Meglen and N. Damrauer,
General method for reducing adaptive laser pulse-shaping experiments to a single control variable, J. Phys. Chem. A, 111 (2007), 5126-5129.
doi: 10.1021/jp073132o. |
[41] |
J. A. Nelder and R. Mead,
A simplex method for function minimization, Comput. J., 7 (1965), 308-313.
doi: 10.1093/comjnl/7.4.308. |
[42] |
B. Øksendal, Stochastic Differential Equations, Universitext, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-14394-6. |
[43] |
A. Papavasiliou, Particle filters for multiscale diffusions, in Conference Oxford sur les méthodes de Monte Carlo séquentielles, ESAIM Proc., 19, EDP Sci., Les Ulis, 2007,108–114.
doi: 10.1051/proc:071914. |
[44] |
G. A. Pavliotis, Stochastic Processes and Applications. Diffusion Processes, the Fokker-Planck and Langevin Equations, Texts in Applied Mathematics, 60, Springer, New York, 2014.
doi: 10.1007/978-1-4939-1323-7. |
[45] |
G. A. Pavliotis and A. M. Stuart,
Parameter estimation for multiscale diffusions, J. Stat. Phys., 127 (2007), 741-781.
doi: 10.1007/s10955-007-9300-6. |
[46] |
L. M. Rios and N. V. Sahinidis,
Derivative-free optimization: A review of algorithms and comparison of software implementations, J. Global Optim., 56 (2013), 1247-1293.
doi: 10.1007/s10898-012-9951-y. |
[47] |
J. Roslund and H. Rabitz, Dynamic dimensionality identification for quantum control, Phys. Rev. Lett., 112 (2014).
doi: 10.1103/PhysRevLett.112.143001. |
[48] |
C. Schillings and A. M. Stuart,
Analysis of the ensemble Kalman filter for inverse problems, SIAM J. Numer. Anal., 55 (2017), 1264-1290.
doi: 10.1137/16M105959X. |
[49] |
S. Shan and G. G. Wang,
Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions, Struct. Multidiscip. Optim., 41 (2010), 219-241.
doi: 10.1007/s00158-009-0420-2. |
[50] |
A. Singer and R. R. Coifman,
Non-linear independent component analysis with diffusion maps, Appl. Comput. Harmon. Anal., 25 (2008), 226-239.
doi: 10.1016/j.acha.2007.11.001. |
[51] |
E. Vanden-Eijnden,
Numerical techniques for multi-scale dynamical systems with stochastic effects, Commun. Math. Sci., 1 (2003), 385-391.
doi: 10.4310/CMS.2003.v1.n2.a11. |
[52] |
E. Weinan, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden,
Heterogeneous multiscale methods: A review, Commun. Comput. Phys., 2 (2007), 367-450.
|

















[1] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
[2] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[3] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[4] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[5] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[6] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[7] |
Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021003 |
[8] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[9] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[10] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[11] |
Nicholas Geneva, Nicholas Zabaras. Multi-fidelity generative deep learning turbulent flows. Foundations of Data Science, 2020, 2 (4) : 391-428. doi: 10.3934/fods.2020019 |
[12] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[13] |
Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363 |
[14] |
Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021013 |
[15] |
Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117 |
[16] |
Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050 |
[17] |
João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321 |
[18] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[19] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[20] |
Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]