January  2021, 8(1): 1-8. doi: 10.3934/jcd.2021001

Homogeneous darboux polynomials and generalising integrable ODE systems

Department of Mathematics and Statistics, La Trobe University, Victoria 3086, Australia

* Corresponding author: Peter H. van der Kamp

Received  February 2020 Revised  May 2020 Published  August 2020

We show that any system of ODEs can be modified whilst preserving its homogeneous Darboux polynomials. We employ the result to generalise a hierarchy of integrable Lotka-Volterra systems.

Citation: Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001
References:
[1]

D.W. AlbrechtE.L. Mansfield and A.E. Milne, Algorithms for special integrals of ordinary differential equations, J. Phys. A: Math. Gen., 29 (1996), 973-991.  doi: 10.1088/0305-4470/29/5/013.  Google Scholar

[2]

O. I. Bogoyavlenskij, Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.  doi: 10.1134/S1560354708060051.  Google Scholar

[3]

E. Celledoni, C. Evripidou, D. I. McLaren, B. Owren, G. R. W. Quispel, B. K. Tapley and P. H. van der Kamp, Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps, J. Phys. A: Math. Theor., 52 (2019), 11 pp. doi: 10.1088/1751-8121/ab294b.  Google Scholar

[4]

H. ChristodoulidiA. N. W. Hone and T. E. Kouloukas, A new class of integrable Lotka-Volterra systems, J. Comput. Dyn., 6 (2019), 223-237.  doi: 10.3934/jcd.2019011.  Google Scholar

[5]

C. B. Collins, Algebraic conditions for a centre or a focus in some simple systems of arbitrary degree, J. Math. Anal. Appl., 195 (1995), 719-735.  doi: 10.1006/jmaa.1995.1385.  Google Scholar

[6]

C. EvripidouP. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, J. Comput. Dyn., 6 (2019), 277-306.  doi: 10.3934/jcd.2019014.  Google Scholar

[7]

A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific, 2001. doi: 10.1142/9789812811943.  Google Scholar

[8]

T. E. Kouloukas, G. R. W. Quispel and P. Vanhaecke, Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13 pp. doi: 10.1088/1751-8113/49/22/225201.  Google Scholar

[9]

D. T. Tran, Complete Integrability of Maps Obtained as Reductions of Integrable Lattice Equations, Ph.D thesis, La Trobe University, Australia, 2011. Google Scholar

[10]

P. H. van der Kamp, T. E. Kouloukas, G. R. W. Quispel, D. T. Tran and P. Vanhaecke, Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140481. doi: 10.1098/rspa.2014.0481.  Google Scholar

show all references

References:
[1]

D.W. AlbrechtE.L. Mansfield and A.E. Milne, Algorithms for special integrals of ordinary differential equations, J. Phys. A: Math. Gen., 29 (1996), 973-991.  doi: 10.1088/0305-4470/29/5/013.  Google Scholar

[2]

O. I. Bogoyavlenskij, Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.  doi: 10.1134/S1560354708060051.  Google Scholar

[3]

E. Celledoni, C. Evripidou, D. I. McLaren, B. Owren, G. R. W. Quispel, B. K. Tapley and P. H. van der Kamp, Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps, J. Phys. A: Math. Theor., 52 (2019), 11 pp. doi: 10.1088/1751-8121/ab294b.  Google Scholar

[4]

H. ChristodoulidiA. N. W. Hone and T. E. Kouloukas, A new class of integrable Lotka-Volterra systems, J. Comput. Dyn., 6 (2019), 223-237.  doi: 10.3934/jcd.2019011.  Google Scholar

[5]

C. B. Collins, Algebraic conditions for a centre or a focus in some simple systems of arbitrary degree, J. Math. Anal. Appl., 195 (1995), 719-735.  doi: 10.1006/jmaa.1995.1385.  Google Scholar

[6]

C. EvripidouP. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, J. Comput. Dyn., 6 (2019), 277-306.  doi: 10.3934/jcd.2019014.  Google Scholar

[7]

A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific, 2001. doi: 10.1142/9789812811943.  Google Scholar

[8]

T. E. Kouloukas, G. R. W. Quispel and P. Vanhaecke, Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13 pp. doi: 10.1088/1751-8113/49/22/225201.  Google Scholar

[9]

D. T. Tran, Complete Integrability of Maps Obtained as Reductions of Integrable Lattice Equations, Ph.D thesis, La Trobe University, Australia, 2011. Google Scholar

[10]

P. H. van der Kamp, T. E. Kouloukas, G. R. W. Quispel, D. T. Tran and P. Vanhaecke, Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140481. doi: 10.1098/rspa.2014.0481.  Google Scholar

[1]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[2]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[3]

De-han Chen, Daijun jiang. Convergence rates of Tikhonov regularization for recovering growth rates in a Lotka-Volterra competition model with diffusion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021023

[4]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[5]

Krzysztof Stempak. Spectral properties of ordinary differential operators admitting special decompositions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021054

[6]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[7]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[8]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[9]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[10]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[11]

Takao Komatsu, Bijan Kumar Patel, Claudio Pita-Ruiz. Several formulas for Bernoulli numbers and polynomials. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021006

[12]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[13]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[14]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[15]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[16]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[17]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[18]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[19]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[20]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

 Impact Factor: 

Metrics

  • PDF downloads (121)
  • HTML views (282)
  • Cited by (0)

[Back to Top]