[1]
|
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7.
|
[2]
|
V. Baladi and L-S. Young, On the spectra of randomly perturbed expanding maps, Commun. Math. Phys., 2 (1993), 355-385.
doi: 10.1007/BF02098487.
|
[3]
|
V. Baladi, A. Kondah and B. Schmitt, Random correlations for small perturbations of expanding maps, Random Comput. Dyn., 2-3 (1996), 179-204.
|
[4]
|
P. Bálint, G. Keller, F. Sélley and I. P. Tóth, Synchronization versus stability of the invariant distribution for a class of globally coupled maps, Nonlinearity, 8 (2018), 3770.
doi: 10.1088/1361-6544/aac5b0.
|
[5]
|
J.-B. Bardet, G. Keller and R. Zweimüller, Stochastically stable globally coupled maps with bistable thermodynamic limit, Commun. Math. Phys., 1 (2009), 237-270.
doi: 10.1007/s00220-009-0854-9.
|
[6]
|
M. Blank and G. Keller, Random perturbations of chaotic dynamical systems: Stability of the spectrum, Nonlinearity, 5 (1998), 1351.
doi: 10.1088/0951-7715/11/5/010.
|
[7]
|
M. Blank, Collective phenomena in lattices of weakly interacting maps, Dokl. Akad. Nauk., 3 (2010), 300-304.
doi: 10.1134/S1064562410010126.
|
[8]
|
M. Blank, Self-consistent mappings and systems of interacting particles, Dokl. Math., 1 (2011), 49-52.
doi: 10.1134/S1064562411010133.
|
[9]
|
M. Blank, Ergodic averaging with and without invariant measures, Nonlinearity, 8 (2017), 4649.
doi: 10.1088/1361-6544/aa8fe8.
|
[10]
|
T. Bogenschütz, Stochastic stability of invariant subspaces, Ergod. Theor. Dyn. Syst., 3 (2000), 663-680.
doi: 10.1017/S0143385700000353.
|
[11]
|
J. Buzzi, Absolutely continuous SRB measures for random Lasota–Yorke maps, T. Am. Math. Soc., 7 (2000), 3289-3303.
doi: 10.1090/S0002-9947-00-02607-6.
|
[12]
|
A. Boyarsky, P. Góra and C. Keefe, Absolutely continuous invariant measures for non-autonomous dynamical systems, J. Math. Anal. Appl., 1 (2019), 159-168.
doi: 10.1016/j.jmaa.2018.09.060.
|
[13]
|
J-R. Chazottes and B. Fernandez, Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, Springer Science & Business Media, 2005.
|
[14]
|
J. Ding, Q. Du and T-Y. Li, High order approximation of the Frobenius–Perron operator, Appl. Math. Comput., 2-3 (1993), 151-171.
doi: 10.1016/0096-3003(93)90099-Z.
|
[15]
|
J. Ding and A. Zhou, Finite approximations of Frobenius–Perron operators. A solution of {U}lam's conjecture to multi-dimensional transformations, Physica D, 1-2 (1996), 61-68.
doi: 10.1016/0167-2789(95)00292-8.
|
[16]
|
G. Froyland, Finite approximation of Sinai-Bowen-Ruelle measures for Anosov systems in two dimensions, Random Comput. Dyn., 4 (1995), 251-264.
|
[17]
|
G. Froyland, Ulam's method for random interval maps, Nonlinearity, 4 (1999), 1029.
doi: 10.1088/0951-7715/12/4/318.
|
[18]
|
G. Froyland, C. González-Tokman and A. Quas, Stability and approximation of random invariant densities for Lasota–Yorke map cocycles, Nonlinearity, 4 (2014), 647.
doi: 10.1088/0951-7715/27/4/647.
|
[19]
|
G. Froyland, C. González-Tokman and R. D. A. Murray, Quenched stochastic stability for eventually expanding-on-average random interval map cocycles, Ergod. Theor. Dyn. Syst., 10 (2019), 2769-2792.
doi: 10.1017/etds.2017.143.
|
[20]
|
M. Jiang and Y. B. Pesin, Equilibrium measures for coupled map lattices: Existence, uniqueness and finite-dimensional approximations, Commun. Math. Phys., 3 (1998), 675-711.
doi: 10.1007/s002200050344.
|
[21]
|
K. Kaneko, Globally coupled chaos violates the law of large numbers but not the central limit theorem, Phys. Rev. Lett., 12 (1990), 1391.
doi: 10.1103/PhysRevLett.65.1391.
|
[22]
|
C. Liverani and G. Keller, A spectral gap for a one-dimensional lattice of coupled piecewise expanding interval maps, in Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, Springer, 2005,115–151.
doi: 10.1007/11360810_6.
|
[23]
|
G. Keller, R. Klages and P. J. Howard, Continuity properties of transport coefficients in simple maps, Nonlinearity, 8 (2008), 1719.
doi: 10.1088/0951-7715/21/8/003.
|
[24]
|
G. Keller, An ergodic theoretic approach to mean field coupled maps, Prog. Probab., (2000), 183–208.
|
[25]
|
S. Klus, P. Koltai and C. Schütte, On the numerical approximation of the Perron–Frobenius and Koopman operator, J. Comput. Dyn., 1 (2016), 51.
doi: 10.3934/jcd.2016003.
|
[26]
|
T-Y. Li, Finite approximation for the Frobenius–Perron operator. A solution to Ulam's conjecture, J. Approx Theory, 2 (1976), 177-186.
doi: 10.1016/0021-9045(76)90037-X.
|
[27]
|
R. D. A. Murray, Discrete Approximation of Invariant Densities, University of Cambridge, 1997.
|
[28]
|
W. Parry, On the $\beta$-expansions of real numbers, Acta Math. Hung., 3-4 (1960), 401-416.
doi: 10.1007/BF02020954.
|
[29]
|
W. Parry, Representations for real numbers, Acta Math. Hung., 1-2 (1964), 95-105.
doi: 10.1007/BF01897025.
|
[30]
|
A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Hung., 3-4 (1957), 477-493.
doi: 10.1007/BF02020331.
|
[31]
|
F. M. Sélley, Asymptotic Properties of Mean Field Coupled Maps, Ph.D thesis, Budapest University of Technology and Economics, 2019.
|
[32]
|
W. Ott, M. Stenlund and L-S. Young, Memory loss for time-dependent dynamical systems, Math. Res. Lett., 2 (2009), 463-475.
doi: 10.4310/MRL.2009.v16.n3.a7.
|
[33]
|
S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, New York, 1960.
|