
-
Previous Article
A general framework for validated continuation of periodic orbits in systems of polynomial ODEs
- JCD Home
- This Issue
-
Next Article
A self-consistent dynamical system with multiple absolutely continuous invariant measures
The geometry of convergence in numerical analysis
Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N5E6, Canada |
The domains of mesh functions are strict subsets of the underlying space of continuous independent variables. Spaces of partial maps between topological spaces admit topologies which do not depend on any metric. Such topologies geometrically generalize the usual numerical analysis definitions of convergence.
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd edition, Addison-Wesley, 1978. |
[2] |
U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations, SIAM, 1998.
doi: 10.1137/1.9781611971392. |
[3] |
K. Back,
Concepts of similarity for utility functions, J. Math. Econom., 15 (1986), 129-142.
doi: 10.1016/0304-4068(86)90004-2. |
[4] |
G. Beer,
On the Fell topology, Set-valued Analysis, 1 (1993), 69-80.
doi: 10.1007/BF01039292. |
[5] |
G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers Group, Dordrecht, 1993.
doi: 10.1007/978-94-015-8149-3. |
[6] |
G. Beer, A. Caserta, G. D. Maio and R. Lucchetti,
Convergence of partial maps, J. Math. Anal. Appl., 419 (2014), 1274-1289.
doi: 10.1016/j.jmaa.2014.05.040. |
[7] |
R. D. Canary, D. B. A. Epstein and P. L. Green, Notes on notes of Thurston, in Fundamentals
of Hyperbolic Geometry: Selected Expositions, London Math. Soc. Lecture Note Ser., 328,
Cambridge Univ. Press, Cambridge, 2006. |
[8] |
C. Chabauty,
Limite dénsembles et géométrie des nombres, Bull. Soc. Math. France, 78 (1950), 143-151.
|
[9] |
C. Cuell and G. W. Patrick,
Geometric discrete analogues of tangent bundles and constrained Lagrangian systems, J. Geom. Phys., 59 (2009), 976-997.
doi: 10.1016/j.geomphys.2009.04.005. |
[10] |
P. de la Harpe, Spaces of closed subgroups of locally compact groups, preprint, arXiv: 0807.2030. Google Scholar |
[11] |
J. M. G. Fell,
A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13 (1962), 472-476.
doi: 10.1090/S0002-9939-1962-0139135-6. |
[12] |
A. C. Hansen,
A theoretical framework for backward error analysis on manifolds, J. Geom. Mech., 3 (2011), 81-111.
doi: 10.3934/jgm.2011.3.81. |
[13] |
A. Illanes and S. B. Nadler, Hyperspaces. Fundamentals and Recent Advances., Marcel Dekker, Inc., New York, 1999. |
[14] |
A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd edition,
Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2009. |
[15] |
A. Iserles, H. Z. Munthe-Kass, S. P. Norsett and A. Zanna,
Lie-group methods, Acta Numerica, 9 (2000), 215-365.
doi: 10.1017/S0962492900002154. |
[16] |
K. Kuratowski, Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl. (4), 40 (1955),
61–67.
doi: 10.1007/BF02416522. |
[17] |
K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. |
[18] |
K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Pańtwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968. |
[19] |
R. Lucchetti and A. Pasquale,
A new approach to hyperspace theory, J. Convex Anal., 1 (1994), 173-193.
|
[20] |
J. E. Marsden, G. W. Patrick and S. Shkoller,
Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys., 199 (1998), 351-395.
doi: 10.1007/s002200050505. |
[21] |
J. E. Marsden and M. West,
Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.
doi: 10.1017/S096249290100006X. |
[22] |
K. Matsuzaki,
The Chabauty and the Thurston topologies on the hyperspace of closed subsets, J. Math. Soc. Japan, 69 (2017), 263-292.
doi: 10.2969/jmsj/06910263. |
[23] |
E. Michael,
Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182.
doi: 10.1090/S0002-9947-1951-0042109-4. |
[24] |
J. R. Munkres, Topology, Prentice Hall, 2000. |
[25] |
S. B. Nadler, Hyperspaces of Sets. A Text with Research Questions, Marcel Dekker, Inc., New York-Basel, 1978. |
[26] |
R. S. Palais,
When proper maps are closed, Proc. Amer. Math. Soc., 24 (1970), 835-836.
doi: 10.2307/2037337. |
[27] |
G. W. Patrick and C. Cuell,
Error analysis of variational integrators of unconstrained Lagrangian systems, Numerische Mathematik, 113 (2009), 243-264.
doi: 10.1007/s00211-009-0245-3. |
[28] |
W. Rudin, Functional Analysis, McGraw-Hill, 1973. |
[29] |
V. Runde, A Taste of Topology, Universitext, Springer, New York, 2005. |
[30] | M. Schatzman, Numerical Analysis: A Mathematical Introduction, Clarendon Press, Oxford, 2002. Google Scholar |
[31] |
E. Süli and D. F. Mayer, An Introduction to Numerical Analysis, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511801181.![]() ![]() |
[32] |
S. Willard, General Topology, Addison-Wesley, 1970. |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd edition, Addison-Wesley, 1978. |
[2] |
U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations, SIAM, 1998.
doi: 10.1137/1.9781611971392. |
[3] |
K. Back,
Concepts of similarity for utility functions, J. Math. Econom., 15 (1986), 129-142.
doi: 10.1016/0304-4068(86)90004-2. |
[4] |
G. Beer,
On the Fell topology, Set-valued Analysis, 1 (1993), 69-80.
doi: 10.1007/BF01039292. |
[5] |
G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers Group, Dordrecht, 1993.
doi: 10.1007/978-94-015-8149-3. |
[6] |
G. Beer, A. Caserta, G. D. Maio and R. Lucchetti,
Convergence of partial maps, J. Math. Anal. Appl., 419 (2014), 1274-1289.
doi: 10.1016/j.jmaa.2014.05.040. |
[7] |
R. D. Canary, D. B. A. Epstein and P. L. Green, Notes on notes of Thurston, in Fundamentals
of Hyperbolic Geometry: Selected Expositions, London Math. Soc. Lecture Note Ser., 328,
Cambridge Univ. Press, Cambridge, 2006. |
[8] |
C. Chabauty,
Limite dénsembles et géométrie des nombres, Bull. Soc. Math. France, 78 (1950), 143-151.
|
[9] |
C. Cuell and G. W. Patrick,
Geometric discrete analogues of tangent bundles and constrained Lagrangian systems, J. Geom. Phys., 59 (2009), 976-997.
doi: 10.1016/j.geomphys.2009.04.005. |
[10] |
P. de la Harpe, Spaces of closed subgroups of locally compact groups, preprint, arXiv: 0807.2030. Google Scholar |
[11] |
J. M. G. Fell,
A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13 (1962), 472-476.
doi: 10.1090/S0002-9939-1962-0139135-6. |
[12] |
A. C. Hansen,
A theoretical framework for backward error analysis on manifolds, J. Geom. Mech., 3 (2011), 81-111.
doi: 10.3934/jgm.2011.3.81. |
[13] |
A. Illanes and S. B. Nadler, Hyperspaces. Fundamentals and Recent Advances., Marcel Dekker, Inc., New York, 1999. |
[14] |
A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd edition,
Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2009. |
[15] |
A. Iserles, H. Z. Munthe-Kass, S. P. Norsett and A. Zanna,
Lie-group methods, Acta Numerica, 9 (2000), 215-365.
doi: 10.1017/S0962492900002154. |
[16] |
K. Kuratowski, Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl. (4), 40 (1955),
61–67.
doi: 10.1007/BF02416522. |
[17] |
K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. |
[18] |
K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Pańtwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968. |
[19] |
R. Lucchetti and A. Pasquale,
A new approach to hyperspace theory, J. Convex Anal., 1 (1994), 173-193.
|
[20] |
J. E. Marsden, G. W. Patrick and S. Shkoller,
Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys., 199 (1998), 351-395.
doi: 10.1007/s002200050505. |
[21] |
J. E. Marsden and M. West,
Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.
doi: 10.1017/S096249290100006X. |
[22] |
K. Matsuzaki,
The Chabauty and the Thurston topologies on the hyperspace of closed subsets, J. Math. Soc. Japan, 69 (2017), 263-292.
doi: 10.2969/jmsj/06910263. |
[23] |
E. Michael,
Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182.
doi: 10.1090/S0002-9947-1951-0042109-4. |
[24] |
J. R. Munkres, Topology, Prentice Hall, 2000. |
[25] |
S. B. Nadler, Hyperspaces of Sets. A Text with Research Questions, Marcel Dekker, Inc., New York-Basel, 1978. |
[26] |
R. S. Palais,
When proper maps are closed, Proc. Amer. Math. Soc., 24 (1970), 835-836.
doi: 10.2307/2037337. |
[27] |
G. W. Patrick and C. Cuell,
Error analysis of variational integrators of unconstrained Lagrangian systems, Numerische Mathematik, 113 (2009), 243-264.
doi: 10.1007/s00211-009-0245-3. |
[28] |
W. Rudin, Functional Analysis, McGraw-Hill, 1973. |
[29] |
V. Runde, A Taste of Topology, Universitext, Springer, New York, 2005. |
[30] | M. Schatzman, Numerical Analysis: A Mathematical Introduction, Clarendon Press, Oxford, 2002. Google Scholar |
[31] |
E. Süli and D. F. Mayer, An Introduction to Numerical Analysis, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511801181.![]() ![]() |
[32] |
S. Willard, General Topology, Addison-Wesley, 1970. |



[1] |
Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112 |
[2] |
Enrico Gerlach, Charlampos Skokos. Comparing the efficiency of numerical techniques for the integration of variational equations. Conference Publications, 2011, 2011 (Special) : 475-484. doi: 10.3934/proc.2011.2011.475 |
[3] |
Cheng Wang. Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1143-1172. doi: 10.3934/dcdsb.2004.4.1143 |
[4] |
Hongguang Xiao, Wen Tan, Dehua Xiang, Lifu Chen, Ning Li. A study of numerical integration based on Legendre polynomial and RLS algorithm. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 457-464. doi: 10.3934/naco.2017028 |
[5] |
Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220 |
[6] |
Ruijun Zhao, Yong-Tao Zhang, Shanqin Chen. Krylov implicit integration factor WENO method for SIR model with directed diffusion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4983-5001. doi: 10.3934/dcdsb.2019041 |
[7] |
Hao-Chun Lu. An efficient convexification method for solving generalized geometric problems. Journal of Industrial & Management Optimization, 2012, 8 (2) : 429-455. doi: 10.3934/jimo.2012.8.429 |
[8] |
Zhanyuan Hou. Geometric method for global stability of discrete population models. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3305-3334. doi: 10.3934/dcdsb.2020063 |
[9] |
Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018 |
[10] |
Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021065 |
[11] |
Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79. |
[12] |
Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223 |
[13] |
Shuang Liu, Xinfeng Liu. Krylov implicit integration factor method for a class of stiff reaction-diffusion systems with moving boundaries. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 141-159. doi: 10.3934/dcdsb.2019176 |
[14] |
Antonia Katzouraki, Tania Stathaki. Intelligent traffic control on internet-like topologies - integration of graph principles to the classic Runge--Kutta method. Conference Publications, 2009, 2009 (Special) : 404-415. doi: 10.3934/proc.2009.2009.404 |
[15] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[16] |
Jahnabi Chakravarty, Ashiho Athikho, Manideepa Saha. Convergence of interval AOR method for linear interval equations. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021006 |
[17] |
Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact Levenberg-Marquardt method. Journal of Industrial & Management Optimization, 2011, 7 (1) : 199-210. doi: 10.3934/jimo.2011.7.199 |
[18] |
Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033 |
[19] |
Karl Kunisch, Markus Müller. Uniform convergence of the POD method and applications to optimal control. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4477-4501. doi: 10.3934/dcds.2015.35.4477 |
[20] |
Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial & Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]