
-
Previous Article
A general framework for validated continuation of periodic orbits in systems of polynomial ODEs
- JCD Home
- This Issue
-
Next Article
A self-consistent dynamical system with multiple absolutely continuous invariant measures
The geometry of convergence in numerical analysis
Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N5E6, Canada |
The domains of mesh functions are strict subsets of the underlying space of continuous independent variables. Spaces of partial maps between topological spaces admit topologies which do not depend on any metric. Such topologies geometrically generalize the usual numerical analysis definitions of convergence.
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd edition, Addison-Wesley, 1978. |
[2] |
U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations, SIAM, 1998.
doi: 10.1137/1.9781611971392. |
[3] |
K. Back,
Concepts of similarity for utility functions, J. Math. Econom., 15 (1986), 129-142.
doi: 10.1016/0304-4068(86)90004-2. |
[4] |
G. Beer,
On the Fell topology, Set-valued Analysis, 1 (1993), 69-80.
doi: 10.1007/BF01039292. |
[5] |
G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers Group, Dordrecht, 1993.
doi: 10.1007/978-94-015-8149-3. |
[6] |
G. Beer, A. Caserta, G. D. Maio and R. Lucchetti,
Convergence of partial maps, J. Math. Anal. Appl., 419 (2014), 1274-1289.
doi: 10.1016/j.jmaa.2014.05.040. |
[7] |
R. D. Canary, D. B. A. Epstein and P. L. Green, Notes on notes of Thurston, in Fundamentals
of Hyperbolic Geometry: Selected Expositions, London Math. Soc. Lecture Note Ser., 328,
Cambridge Univ. Press, Cambridge, 2006. |
[8] |
C. Chabauty,
Limite dénsembles et géométrie des nombres, Bull. Soc. Math. France, 78 (1950), 143-151.
|
[9] |
C. Cuell and G. W. Patrick,
Geometric discrete analogues of tangent bundles and constrained Lagrangian systems, J. Geom. Phys., 59 (2009), 976-997.
doi: 10.1016/j.geomphys.2009.04.005. |
[10] |
P. de la Harpe, Spaces of closed subgroups of locally compact groups, preprint, arXiv: 0807.2030. Google Scholar |
[11] |
J. M. G. Fell,
A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13 (1962), 472-476.
doi: 10.1090/S0002-9939-1962-0139135-6. |
[12] |
A. C. Hansen,
A theoretical framework for backward error analysis on manifolds, J. Geom. Mech., 3 (2011), 81-111.
doi: 10.3934/jgm.2011.3.81. |
[13] |
A. Illanes and S. B. Nadler, Hyperspaces. Fundamentals and Recent Advances., Marcel Dekker, Inc., New York, 1999. |
[14] |
A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd edition,
Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2009. |
[15] |
A. Iserles, H. Z. Munthe-Kass, S. P. Norsett and A. Zanna,
Lie-group methods, Acta Numerica, 9 (2000), 215-365.
doi: 10.1017/S0962492900002154. |
[16] |
K. Kuratowski, Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl. (4), 40 (1955),
61–67.
doi: 10.1007/BF02416522. |
[17] |
K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. |
[18] |
K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Pańtwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968. |
[19] |
R. Lucchetti and A. Pasquale,
A new approach to hyperspace theory, J. Convex Anal., 1 (1994), 173-193.
|
[20] |
J. E. Marsden, G. W. Patrick and S. Shkoller,
Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys., 199 (1998), 351-395.
doi: 10.1007/s002200050505. |
[21] |
J. E. Marsden and M. West,
Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.
doi: 10.1017/S096249290100006X. |
[22] |
K. Matsuzaki,
The Chabauty and the Thurston topologies on the hyperspace of closed subsets, J. Math. Soc. Japan, 69 (2017), 263-292.
doi: 10.2969/jmsj/06910263. |
[23] |
E. Michael,
Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182.
doi: 10.1090/S0002-9947-1951-0042109-4. |
[24] |
J. R. Munkres, Topology, Prentice Hall, 2000. |
[25] |
S. B. Nadler, Hyperspaces of Sets. A Text with Research Questions, Marcel Dekker, Inc., New York-Basel, 1978. |
[26] |
R. S. Palais,
When proper maps are closed, Proc. Amer. Math. Soc., 24 (1970), 835-836.
doi: 10.2307/2037337. |
[27] |
G. W. Patrick and C. Cuell,
Error analysis of variational integrators of unconstrained Lagrangian systems, Numerische Mathematik, 113 (2009), 243-264.
doi: 10.1007/s00211-009-0245-3. |
[28] |
W. Rudin, Functional Analysis, McGraw-Hill, 1973. |
[29] |
V. Runde, A Taste of Topology, Universitext, Springer, New York, 2005. |
[30] | M. Schatzman, Numerical Analysis: A Mathematical Introduction, Clarendon Press, Oxford, 2002. Google Scholar |
[31] |
E. Süli and D. F. Mayer, An Introduction to Numerical Analysis, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511801181.![]() ![]() |
[32] |
S. Willard, General Topology, Addison-Wesley, 1970. |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd edition, Addison-Wesley, 1978. |
[2] |
U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations, SIAM, 1998.
doi: 10.1137/1.9781611971392. |
[3] |
K. Back,
Concepts of similarity for utility functions, J. Math. Econom., 15 (1986), 129-142.
doi: 10.1016/0304-4068(86)90004-2. |
[4] |
G. Beer,
On the Fell topology, Set-valued Analysis, 1 (1993), 69-80.
doi: 10.1007/BF01039292. |
[5] |
G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers Group, Dordrecht, 1993.
doi: 10.1007/978-94-015-8149-3. |
[6] |
G. Beer, A. Caserta, G. D. Maio and R. Lucchetti,
Convergence of partial maps, J. Math. Anal. Appl., 419 (2014), 1274-1289.
doi: 10.1016/j.jmaa.2014.05.040. |
[7] |
R. D. Canary, D. B. A. Epstein and P. L. Green, Notes on notes of Thurston, in Fundamentals
of Hyperbolic Geometry: Selected Expositions, London Math. Soc. Lecture Note Ser., 328,
Cambridge Univ. Press, Cambridge, 2006. |
[8] |
C. Chabauty,
Limite dénsembles et géométrie des nombres, Bull. Soc. Math. France, 78 (1950), 143-151.
|
[9] |
C. Cuell and G. W. Patrick,
Geometric discrete analogues of tangent bundles and constrained Lagrangian systems, J. Geom. Phys., 59 (2009), 976-997.
doi: 10.1016/j.geomphys.2009.04.005. |
[10] |
P. de la Harpe, Spaces of closed subgroups of locally compact groups, preprint, arXiv: 0807.2030. Google Scholar |
[11] |
J. M. G. Fell,
A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13 (1962), 472-476.
doi: 10.1090/S0002-9939-1962-0139135-6. |
[12] |
A. C. Hansen,
A theoretical framework for backward error analysis on manifolds, J. Geom. Mech., 3 (2011), 81-111.
doi: 10.3934/jgm.2011.3.81. |
[13] |
A. Illanes and S. B. Nadler, Hyperspaces. Fundamentals and Recent Advances., Marcel Dekker, Inc., New York, 1999. |
[14] |
A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd edition,
Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2009. |
[15] |
A. Iserles, H. Z. Munthe-Kass, S. P. Norsett and A. Zanna,
Lie-group methods, Acta Numerica, 9 (2000), 215-365.
doi: 10.1017/S0962492900002154. |
[16] |
K. Kuratowski, Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl. (4), 40 (1955),
61–67.
doi: 10.1007/BF02416522. |
[17] |
K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. |
[18] |
K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Pańtwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968. |
[19] |
R. Lucchetti and A. Pasquale,
A new approach to hyperspace theory, J. Convex Anal., 1 (1994), 173-193.
|
[20] |
J. E. Marsden, G. W. Patrick and S. Shkoller,
Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys., 199 (1998), 351-395.
doi: 10.1007/s002200050505. |
[21] |
J. E. Marsden and M. West,
Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.
doi: 10.1017/S096249290100006X. |
[22] |
K. Matsuzaki,
The Chabauty and the Thurston topologies on the hyperspace of closed subsets, J. Math. Soc. Japan, 69 (2017), 263-292.
doi: 10.2969/jmsj/06910263. |
[23] |
E. Michael,
Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182.
doi: 10.1090/S0002-9947-1951-0042109-4. |
[24] |
J. R. Munkres, Topology, Prentice Hall, 2000. |
[25] |
S. B. Nadler, Hyperspaces of Sets. A Text with Research Questions, Marcel Dekker, Inc., New York-Basel, 1978. |
[26] |
R. S. Palais,
When proper maps are closed, Proc. Amer. Math. Soc., 24 (1970), 835-836.
doi: 10.2307/2037337. |
[27] |
G. W. Patrick and C. Cuell,
Error analysis of variational integrators of unconstrained Lagrangian systems, Numerische Mathematik, 113 (2009), 243-264.
doi: 10.1007/s00211-009-0245-3. |
[28] |
W. Rudin, Functional Analysis, McGraw-Hill, 1973. |
[29] |
V. Runde, A Taste of Topology, Universitext, Springer, New York, 2005. |
[30] | M. Schatzman, Numerical Analysis: A Mathematical Introduction, Clarendon Press, Oxford, 2002. Google Scholar |
[31] |
E. Süli and D. F. Mayer, An Introduction to Numerical Analysis, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511801181.![]() ![]() |
[32] |
S. Willard, General Topology, Addison-Wesley, 1970. |



[1] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[2] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[3] |
Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 |
[4] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[5] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[6] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[7] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[8] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[9] |
Daniel Kressner, Jonas Latz, Stefano Massei, Elisabeth Ullmann. Certified and fast computations with shallow covariance kernels. Foundations of Data Science, 2020, 2 (4) : 487-512. doi: 10.3934/fods.2020022 |
[10] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[11] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[12] |
Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117 |
[13] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[14] |
Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050 |
[15] |
João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321 |
[16] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[17] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[18] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[19] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[20] |
Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]