\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm

  • * Corresponding author: Andrzej Ruszewski

    * Corresponding author: Andrzej Ruszewski

This work was supported by National Science Centre in Poland under Grant No. 2017/27/B/ST7/02443

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The shuffle algorithm is applied to analysis of the fractional descriptor discrete-time linear systems. Using the shuffle algorithm the singularity of the fractional descriptor linear system is eliminated and the system is decomposed into dynamic and static parts. Procedures for computation of the solution and dynamic and static parts of the system are proposed. Sufficient conditions for the positivity of the fractional descriptor discrete-time linear systems are established.

    Mathematics Subject Classification: Primary: 93C05; Secondary: 93C55, 26A33.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. BruC. Coll and E. Sanchez, Structural properties of positive linear time-invariant difference-algebraic equations, Linear Algebra Appl., 349 (2002), 1-10.  doi: 10.1016/S0024-3795(02)00277-X.
    [2] R. Bru, C. Coll, S. Romero-Vivo and E. Sáanchez, Some problems about structural properties of positive descriptor systems, Positive Systems. Lecture Notes in Control and Information Science, Springer, Berlin, 294 (2003), 233–240. doi: 10.1007/978-3-540-44928-7_32.
    [3] M. Busƚowicz and T. Kaczorek, Simple conditions for practical stability of positive fractional discrete-time linear systems, Int. J. Appl. Math. Comput. Sci., 19 (2009), 263-269.  doi: 10.2478/v10006-009-0022-6.
    [4] L. Dai, Singular Control Systems, Lectures Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1989. doi: 10.1007/BFb0002475.
    [5] J. D. DixonJ. C. PolandI. S. Pressman and L. Ribes, The shuffle algorithm and Jordan blocks, Linear Algebra Appl., 142 (1990), 159-165.  doi: 10.1016/0024-3795(90)90264-D.
    [6] M. Dodig and M. Stošić, Singular systems, state feedbacks problems, Linear Algebra Appl., 431 (2009), 1267-1292.  doi: 10.1016/j.laa.2009.04.024.
    [7] G.-R. Duan, Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010. doi: 10.1007/978-1-4419-6397-0.
    [8] L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000. doi: 10.1002/9781118033029.
    [9] R. K. H. GalvãoK. H. Kienitz and S. Hadjiloucas, Conversion of descriptor representations to state-space form: An extension of the shuffle algorithm, Internat. J. Control, 91 (2018), 2199-2213.  doi: 10.1080/00207179.2017.1336671.
    [10] R. Herrmann, Fractional Calculus; An Introduction for Physicists, World Scientific Publishing, Singapore, 2018. doi: 10.1142/11107.
    [11] T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, London, 2002. doi: 10.1007/978-1-4471-0221-2.
    [12] T. Kaczorek, Selected Problems of Fractional System Theory, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-20502-6.
    [13] T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Springer, New York, 2015.
    [14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [15] V. Kučera and P. Zagalak, Fundamental theorem of state feedback for singular systems, Automatica J. IFAC, 24 (1988), 653-658.  doi: 10.1016/0005-1098(88)90112-4.
    [16] F. L. Lewis, A survey of linear singular systems, Circuits Systems Signal Process., 5 (1986), 3-36.  doi: 10.1007/BF01600184.
    [17] D. G. Luenberger, Time-invariant descriptor systems, Automatica, 14 (1978), 473-480.  doi: 10.1016/0005-1098(78)90006-7.
    [18] D. G. Luenberger, Dynamic equations in descriptor form, IEEE Trans. Autom. Contr., 22 (1977), 312-321.  doi: 10.1109/tac.1977.1101502.
    [19] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, J. Wiley, New York, 1993.
    [20] K. B. Oldham and  J. SpanierThe Fractional Calculus, Academic Press, New York, 1974. 
    [21] P. Ostalczyk, Discrete Fractional Calculus: Applications in Control and Image Processing; Series in Computer Vision, World Scientific Publishing, Hackensack, New York, 2016. doi: 10.1142/9833.
    [22] I. PodlubnyFractional Differential Equations, Academic Press, an Diego, 1999. 
    [23] J. Sabatier, O. P. Agrawal and J. A. T. Machado, Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, London, 2007. doi: 10.1007/978-1-4020-6042-7.
    [24] Ƚ. Sajewski, Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller, Bull. Pol. Acad. Sci. Tech., 65 (2017), 709-714. 
    [25] HG. SunY. ZhangD. BaleanuW. Chen and YQ. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul, 64 (2018), 213-231. 
    [26] E. Virnik, Stability analysis of positive descriptor systems, Linear Algebra Appl., 429 (2008), 2640-2659.  doi: 10.1016/j.laa.2008.03.002.
    [27] B. J. West, Nature's Patterns and the Fractional Calculus; Fractional Calculus in Applied Sciences and Engineering, De Gruyter, Berlin, 2017. doi: 10.1515/9783110535136.
  • 加载中
SHARE

Article Metrics

HTML views(2148) PDF downloads(220) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return