-
Previous Article
Generalised Manin transformations and QRT maps
- JCD Home
- This Issue
- Next Article
Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm
Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Biaƚystok, Poland |
The shuffle algorithm is applied to analysis of the fractional descriptor discrete-time linear systems. Using the shuffle algorithm the singularity of the fractional descriptor linear system is eliminated and the system is decomposed into dynamic and static parts. Procedures for computation of the solution and dynamic and static parts of the system are proposed. Sufficient conditions for the positivity of the fractional descriptor discrete-time linear systems are established.
References:
[1] |
R. Bru, C. Coll and E. Sanchez,
Structural properties of positive linear time-invariant difference-algebraic equations, Linear Algebra Appl., 349 (2002), 1-10.
doi: 10.1016/S0024-3795(02)00277-X. |
[2] |
R. Bru, C. Coll, S. Romero-Vivo and E. Sáanchez, Some problems about structural properties of positive descriptor systems, Positive Systems. Lecture Notes in Control and Information Science, Springer, Berlin, 294 (2003), 233–240.
doi: 10.1007/978-3-540-44928-7_32. |
[3] |
M. Busƚowicz and T. Kaczorek,
Simple conditions for practical stability of positive fractional discrete-time linear systems, Int. J. Appl. Math. Comput. Sci., 19 (2009), 263-269.
doi: 10.2478/v10006-009-0022-6. |
[4] |
L. Dai, Singular Control Systems, Lectures Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1989.
doi: 10.1007/BFb0002475. |
[5] |
J. D. Dixon, J. C. Poland, I. S. Pressman and L. Ribes,
The shuffle algorithm and Jordan blocks, Linear Algebra Appl., 142 (1990), 159-165.
doi: 10.1016/0024-3795(90)90264-D. |
[6] |
M. Dodig and M. Stošić,
Singular systems, state feedbacks problems, Linear Algebra Appl., 431 (2009), 1267-1292.
doi: 10.1016/j.laa.2009.04.024. |
[7] |
G.-R. Duan, Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010.
doi: 10.1007/978-1-4419-6397-0. |
[8] |
L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000.
doi: 10.1002/9781118033029. |
[9] |
R. K. H. Galvão, K. H. Kienitz and S. Hadjiloucas,
Conversion of descriptor representations to state-space form: An extension of the shuffle algorithm, Internat. J. Control, 91 (2018), 2199-2213.
doi: 10.1080/00207179.2017.1336671. |
[10] |
R. Herrmann, Fractional Calculus; An Introduction for Physicists, World Scientific Publishing, Singapore, 2018.
doi: 10.1142/11107. |
[11] |
T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, London, 2002.
doi: 10.1007/978-1-4471-0221-2. |
[12] |
T. Kaczorek, Selected Problems of Fractional System Theory, Springer-Verlag, Berlin, 2011.
doi: 10.1007/978-3-642-20502-6. |
[13] |
T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Springer, New York, 2015. |
[14] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[15] |
V. Kučera and P. Zagalak,
Fundamental theorem of state feedback for singular systems, Automatica J. IFAC, 24 (1988), 653-658.
doi: 10.1016/0005-1098(88)90112-4. |
[16] |
F. L. Lewis,
A survey of linear singular systems, Circuits Systems Signal Process., 5 (1986), 3-36.
doi: 10.1007/BF01600184. |
[17] |
D. G. Luenberger,
Time-invariant descriptor systems, Automatica, 14 (1978), 473-480.
doi: 10.1016/0005-1098(78)90006-7. |
[18] |
D. G. Luenberger,
Dynamic equations in descriptor form, IEEE Trans. Autom. Contr., 22 (1977), 312-321.
doi: 10.1109/tac.1977.1101502. |
[19] |
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, J. Wiley, New York, 1993. Google Scholar |
[20] |
K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
![]() |
[21] |
P. Ostalczyk, Discrete Fractional Calculus: Applications in Control and Image Processing; Series in Computer Vision, World Scientific Publishing, Hackensack, New York, 2016.
doi: 10.1142/9833. |
[22] |
I. Podlubny, Fractional Differential Equations, Academic Press, an Diego, 1999.
![]() |
[23] |
J. Sabatier, O. P. Agrawal and J. A. T. Machado, Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, London, 2007.
doi: 10.1007/978-1-4020-6042-7. |
[24] |
Ƚ. Sajewski, Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller, Bull. Pol. Acad. Sci. Tech., 65 (2017), 709-714. Google Scholar |
[25] |
HG. Sun, Y. Zhang, D. Baleanu, W. Chen and YQ. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul, 64 (2018), 213-231. Google Scholar |
[26] |
E. Virnik,
Stability analysis of positive descriptor systems, Linear Algebra Appl., 429 (2008), 2640-2659.
doi: 10.1016/j.laa.2008.03.002. |
[27] |
B. J. West, Nature's Patterns and the Fractional Calculus; Fractional Calculus in Applied Sciences and Engineering, De Gruyter, Berlin, 2017.
doi: 10.1515/9783110535136. |
show all references
References:
[1] |
R. Bru, C. Coll and E. Sanchez,
Structural properties of positive linear time-invariant difference-algebraic equations, Linear Algebra Appl., 349 (2002), 1-10.
doi: 10.1016/S0024-3795(02)00277-X. |
[2] |
R. Bru, C. Coll, S. Romero-Vivo and E. Sáanchez, Some problems about structural properties of positive descriptor systems, Positive Systems. Lecture Notes in Control and Information Science, Springer, Berlin, 294 (2003), 233–240.
doi: 10.1007/978-3-540-44928-7_32. |
[3] |
M. Busƚowicz and T. Kaczorek,
Simple conditions for practical stability of positive fractional discrete-time linear systems, Int. J. Appl. Math. Comput. Sci., 19 (2009), 263-269.
doi: 10.2478/v10006-009-0022-6. |
[4] |
L. Dai, Singular Control Systems, Lectures Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1989.
doi: 10.1007/BFb0002475. |
[5] |
J. D. Dixon, J. C. Poland, I. S. Pressman and L. Ribes,
The shuffle algorithm and Jordan blocks, Linear Algebra Appl., 142 (1990), 159-165.
doi: 10.1016/0024-3795(90)90264-D. |
[6] |
M. Dodig and M. Stošić,
Singular systems, state feedbacks problems, Linear Algebra Appl., 431 (2009), 1267-1292.
doi: 10.1016/j.laa.2009.04.024. |
[7] |
G.-R. Duan, Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010.
doi: 10.1007/978-1-4419-6397-0. |
[8] |
L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000.
doi: 10.1002/9781118033029. |
[9] |
R. K. H. Galvão, K. H. Kienitz and S. Hadjiloucas,
Conversion of descriptor representations to state-space form: An extension of the shuffle algorithm, Internat. J. Control, 91 (2018), 2199-2213.
doi: 10.1080/00207179.2017.1336671. |
[10] |
R. Herrmann, Fractional Calculus; An Introduction for Physicists, World Scientific Publishing, Singapore, 2018.
doi: 10.1142/11107. |
[11] |
T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, London, 2002.
doi: 10.1007/978-1-4471-0221-2. |
[12] |
T. Kaczorek, Selected Problems of Fractional System Theory, Springer-Verlag, Berlin, 2011.
doi: 10.1007/978-3-642-20502-6. |
[13] |
T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Springer, New York, 2015. |
[14] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[15] |
V. Kučera and P. Zagalak,
Fundamental theorem of state feedback for singular systems, Automatica J. IFAC, 24 (1988), 653-658.
doi: 10.1016/0005-1098(88)90112-4. |
[16] |
F. L. Lewis,
A survey of linear singular systems, Circuits Systems Signal Process., 5 (1986), 3-36.
doi: 10.1007/BF01600184. |
[17] |
D. G. Luenberger,
Time-invariant descriptor systems, Automatica, 14 (1978), 473-480.
doi: 10.1016/0005-1098(78)90006-7. |
[18] |
D. G. Luenberger,
Dynamic equations in descriptor form, IEEE Trans. Autom. Contr., 22 (1977), 312-321.
doi: 10.1109/tac.1977.1101502. |
[19] |
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, J. Wiley, New York, 1993. Google Scholar |
[20] |
K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
![]() |
[21] |
P. Ostalczyk, Discrete Fractional Calculus: Applications in Control and Image Processing; Series in Computer Vision, World Scientific Publishing, Hackensack, New York, 2016.
doi: 10.1142/9833. |
[22] |
I. Podlubny, Fractional Differential Equations, Academic Press, an Diego, 1999.
![]() |
[23] |
J. Sabatier, O. P. Agrawal and J. A. T. Machado, Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, London, 2007.
doi: 10.1007/978-1-4020-6042-7. |
[24] |
Ƚ. Sajewski, Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller, Bull. Pol. Acad. Sci. Tech., 65 (2017), 709-714. Google Scholar |
[25] |
HG. Sun, Y. Zhang, D. Baleanu, W. Chen and YQ. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul, 64 (2018), 213-231. Google Scholar |
[26] |
E. Virnik,
Stability analysis of positive descriptor systems, Linear Algebra Appl., 429 (2008), 2640-2659.
doi: 10.1016/j.laa.2008.03.002. |
[27] |
B. J. West, Nature's Patterns and the Fractional Calculus; Fractional Calculus in Applied Sciences and Engineering, De Gruyter, Berlin, 2017.
doi: 10.1515/9783110535136. |
[1] |
Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021034 |
[2] |
Sofian De Clercq, Wouter Rogiest, Bart Steyaert, Herwig Bruneel. Stochastic decomposition in discrete-time queues with generalized vacations and applications. Journal of Industrial & Management Optimization, 2012, 8 (4) : 925-938. doi: 10.3934/jimo.2012.8.925 |
[3] |
Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121 |
[4] |
Shaohong Fang, Jing Huang, Jinying Ma. Stabilization of a discrete-time system via nonlinear impulsive control. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1803-1811. doi: 10.3934/dcdss.2020106 |
[5] |
Martino Bardi, Shigeaki Koike, Pierpaolo Soravia. Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations. Discrete & Continuous Dynamical Systems, 2000, 6 (2) : 361-380. doi: 10.3934/dcds.2000.6.361 |
[6] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[7] |
Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207 |
[8] |
Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023 |
[9] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[10] |
Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535 |
[11] |
Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066 |
[12] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[13] |
Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650 |
[14] |
Ciprian Preda. Discrete-time theorems for the dichotomy of one-parameter semigroups. Communications on Pure & Applied Analysis, 2008, 7 (2) : 457-463. doi: 10.3934/cpaa.2008.7.457 |
[15] |
Lih-Ing W. Roeger. Dynamically consistent discrete-time SI and SIS epidemic models. Conference Publications, 2013, 2013 (special) : 653-662. doi: 10.3934/proc.2013.2013.653 |
[16] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[17] |
Veena Goswami, Gopinath Panda. Optimal information policy in discrete-time queues with strategic customers. Journal of Industrial & Management Optimization, 2019, 15 (2) : 689-703. doi: 10.3934/jimo.2018065 |
[18] |
H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183 |
[19] |
Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861 |
[20] |
Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021082 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]