# American Institute of Mathematical Sciences

doi: 10.3934/jcd.2021007

## Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm

 Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Biaƚystok, Poland

* Corresponding author: Andrzej Ruszewski

Received  October 2020 Revised  December 2020 Published  March 2021

Fund Project: This work was supported by National Science Centre in Poland under Grant No. 2017/27/B/ST7/02443

The shuffle algorithm is applied to analysis of the fractional descriptor discrete-time linear systems. Using the shuffle algorithm the singularity of the fractional descriptor linear system is eliminated and the system is decomposed into dynamic and static parts. Procedures for computation of the solution and dynamic and static parts of the system are proposed. Sufficient conditions for the positivity of the fractional descriptor discrete-time linear systems are established.

Citation: Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, doi: 10.3934/jcd.2021007
##### References:
 [1] R. Bru, C. Coll and E. Sanchez, Structural properties of positive linear time-invariant difference-algebraic equations, Linear Algebra Appl., 349 (2002), 1-10.  doi: 10.1016/S0024-3795(02)00277-X.  Google Scholar [2] R. Bru, C. Coll, S. Romero-Vivo and E. Sáanchez, Some problems about structural properties of positive descriptor systems, Positive Systems. Lecture Notes in Control and Information Science, Springer, Berlin, 294 (2003), 233–240. doi: 10.1007/978-3-540-44928-7_32.  Google Scholar [3] M. Busƚowicz and T. Kaczorek, Simple conditions for practical stability of positive fractional discrete-time linear systems, Int. J. Appl. Math. Comput. Sci., 19 (2009), 263-269.  doi: 10.2478/v10006-009-0022-6.  Google Scholar [4] L. Dai, Singular Control Systems, Lectures Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1989. doi: 10.1007/BFb0002475.  Google Scholar [5] J. D. Dixon, J. C. Poland, I. S. Pressman and L. Ribes, The shuffle algorithm and Jordan blocks, Linear Algebra Appl., 142 (1990), 159-165.  doi: 10.1016/0024-3795(90)90264-D.  Google Scholar [6] M. Dodig and M. Stošić, Singular systems, state feedbacks problems, Linear Algebra Appl., 431 (2009), 1267-1292.  doi: 10.1016/j.laa.2009.04.024.  Google Scholar [7] G.-R. Duan, Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010. doi: 10.1007/978-1-4419-6397-0.  Google Scholar [8] L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000. doi: 10.1002/9781118033029.  Google Scholar [9] R. K. H. Galvão, K. H. Kienitz and S. Hadjiloucas, Conversion of descriptor representations to state-space form: An extension of the shuffle algorithm, Internat. J. Control, 91 (2018), 2199-2213.  doi: 10.1080/00207179.2017.1336671.  Google Scholar [10] R. Herrmann, Fractional Calculus; An Introduction for Physicists, World Scientific Publishing, Singapore, 2018. doi: 10.1142/11107.  Google Scholar [11] T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, London, 2002. doi: 10.1007/978-1-4471-0221-2.  Google Scholar [12] T. Kaczorek, Selected Problems of Fractional System Theory, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-20502-6.  Google Scholar [13] T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Springer, New York, 2015.  Google Scholar [14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar [15] V. Kučera and P. Zagalak, Fundamental theorem of state feedback for singular systems, Automatica J. IFAC, 24 (1988), 653-658.  doi: 10.1016/0005-1098(88)90112-4.  Google Scholar [16] F. L. Lewis, A survey of linear singular systems, Circuits Systems Signal Process., 5 (1986), 3-36.  doi: 10.1007/BF01600184.  Google Scholar [17] D. G. Luenberger, Time-invariant descriptor systems, Automatica, 14 (1978), 473-480.  doi: 10.1016/0005-1098(78)90006-7.  Google Scholar [18] D. G. Luenberger, Dynamic equations in descriptor form, IEEE Trans. Autom. Contr., 22 (1977), 312-321.  doi: 10.1109/tac.1977.1101502.  Google Scholar [19] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, J. Wiley, New York, 1993. Google Scholar [20] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.   Google Scholar [21] P. Ostalczyk, Discrete Fractional Calculus: Applications in Control and Image Processing; Series in Computer Vision, World Scientific Publishing, Hackensack, New York, 2016. doi: 10.1142/9833.  Google Scholar [22] I. Podlubny, Fractional Differential Equations, Academic Press, an Diego, 1999.   Google Scholar [23] J. Sabatier, O. P. Agrawal and J. A. T. Machado, Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, London, 2007. doi: 10.1007/978-1-4020-6042-7.  Google Scholar [24] Ƚ. Sajewski, Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller, Bull. Pol. Acad. Sci. Tech., 65 (2017), 709-714.   Google Scholar [25] HG. Sun, Y. Zhang, D. Baleanu, W. Chen and YQ. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul, 64 (2018), 213-231.   Google Scholar [26] E. Virnik, Stability analysis of positive descriptor systems, Linear Algebra Appl., 429 (2008), 2640-2659.  doi: 10.1016/j.laa.2008.03.002.  Google Scholar [27] B. J. West, Nature's Patterns and the Fractional Calculus; Fractional Calculus in Applied Sciences and Engineering, De Gruyter, Berlin, 2017. doi: 10.1515/9783110535136.  Google Scholar

show all references

##### References:
 [1] R. Bru, C. Coll and E. Sanchez, Structural properties of positive linear time-invariant difference-algebraic equations, Linear Algebra Appl., 349 (2002), 1-10.  doi: 10.1016/S0024-3795(02)00277-X.  Google Scholar [2] R. Bru, C. Coll, S. Romero-Vivo and E. Sáanchez, Some problems about structural properties of positive descriptor systems, Positive Systems. Lecture Notes in Control and Information Science, Springer, Berlin, 294 (2003), 233–240. doi: 10.1007/978-3-540-44928-7_32.  Google Scholar [3] M. Busƚowicz and T. Kaczorek, Simple conditions for practical stability of positive fractional discrete-time linear systems, Int. J. Appl. Math. Comput. Sci., 19 (2009), 263-269.  doi: 10.2478/v10006-009-0022-6.  Google Scholar [4] L. Dai, Singular Control Systems, Lectures Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1989. doi: 10.1007/BFb0002475.  Google Scholar [5] J. D. Dixon, J. C. Poland, I. S. Pressman and L. Ribes, The shuffle algorithm and Jordan blocks, Linear Algebra Appl., 142 (1990), 159-165.  doi: 10.1016/0024-3795(90)90264-D.  Google Scholar [6] M. Dodig and M. Stošić, Singular systems, state feedbacks problems, Linear Algebra Appl., 431 (2009), 1267-1292.  doi: 10.1016/j.laa.2009.04.024.  Google Scholar [7] G.-R. Duan, Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010. doi: 10.1007/978-1-4419-6397-0.  Google Scholar [8] L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000. doi: 10.1002/9781118033029.  Google Scholar [9] R. K. H. Galvão, K. H. Kienitz and S. Hadjiloucas, Conversion of descriptor representations to state-space form: An extension of the shuffle algorithm, Internat. J. Control, 91 (2018), 2199-2213.  doi: 10.1080/00207179.2017.1336671.  Google Scholar [10] R. Herrmann, Fractional Calculus; An Introduction for Physicists, World Scientific Publishing, Singapore, 2018. doi: 10.1142/11107.  Google Scholar [11] T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, London, 2002. doi: 10.1007/978-1-4471-0221-2.  Google Scholar [12] T. Kaczorek, Selected Problems of Fractional System Theory, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-20502-6.  Google Scholar [13] T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Springer, New York, 2015.  Google Scholar [14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar [15] V. Kučera and P. Zagalak, Fundamental theorem of state feedback for singular systems, Automatica J. IFAC, 24 (1988), 653-658.  doi: 10.1016/0005-1098(88)90112-4.  Google Scholar [16] F. L. Lewis, A survey of linear singular systems, Circuits Systems Signal Process., 5 (1986), 3-36.  doi: 10.1007/BF01600184.  Google Scholar [17] D. G. Luenberger, Time-invariant descriptor systems, Automatica, 14 (1978), 473-480.  doi: 10.1016/0005-1098(78)90006-7.  Google Scholar [18] D. G. Luenberger, Dynamic equations in descriptor form, IEEE Trans. Autom. Contr., 22 (1977), 312-321.  doi: 10.1109/tac.1977.1101502.  Google Scholar [19] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, J. Wiley, New York, 1993. Google Scholar [20] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.   Google Scholar [21] P. Ostalczyk, Discrete Fractional Calculus: Applications in Control and Image Processing; Series in Computer Vision, World Scientific Publishing, Hackensack, New York, 2016. doi: 10.1142/9833.  Google Scholar [22] I. Podlubny, Fractional Differential Equations, Academic Press, an Diego, 1999.   Google Scholar [23] J. Sabatier, O. P. Agrawal and J. A. T. Machado, Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, London, 2007. doi: 10.1007/978-1-4020-6042-7.  Google Scholar [24] Ƚ. Sajewski, Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller, Bull. Pol. Acad. Sci. Tech., 65 (2017), 709-714.   Google Scholar [25] HG. Sun, Y. Zhang, D. Baleanu, W. Chen and YQ. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul, 64 (2018), 213-231.   Google Scholar [26] E. Virnik, Stability analysis of positive descriptor systems, Linear Algebra Appl., 429 (2008), 2640-2659.  doi: 10.1016/j.laa.2008.03.002.  Google Scholar [27] B. J. West, Nature's Patterns and the Fractional Calculus; Fractional Calculus in Applied Sciences and Engineering, De Gruyter, Berlin, 2017. doi: 10.1515/9783110535136.  Google Scholar
 [1] Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021034 [2] Sofian De Clercq, Wouter Rogiest, Bart Steyaert, Herwig Bruneel. Stochastic decomposition in discrete-time queues with generalized vacations and applications. Journal of Industrial & Management Optimization, 2012, 8 (4) : 925-938. doi: 10.3934/jimo.2012.8.925 [3] Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121 [4] Shaohong Fang, Jing Huang, Jinying Ma. Stabilization of a discrete-time system via nonlinear impulsive control. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1803-1811. doi: 10.3934/dcdss.2020106 [5] Martino Bardi, Shigeaki Koike, Pierpaolo Soravia. Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations. Discrete & Continuous Dynamical Systems, 2000, 6 (2) : 361-380. doi: 10.3934/dcds.2000.6.361 [6] Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166 [7] Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207 [8] Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023 [9] Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 [10] Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535 [11] Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066 [12] Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 [13] Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650 [14] Ciprian Preda. Discrete-time theorems for the dichotomy of one-parameter semigroups. Communications on Pure & Applied Analysis, 2008, 7 (2) : 457-463. doi: 10.3934/cpaa.2008.7.457 [15] Lih-Ing W. Roeger. Dynamically consistent discrete-time SI and SIS epidemic models. Conference Publications, 2013, 2013 (special) : 653-662. doi: 10.3934/proc.2013.2013.653 [16] Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 [17] Veena Goswami, Gopinath Panda. Optimal information policy in discrete-time queues with strategic customers. Journal of Industrial & Management Optimization, 2019, 15 (2) : 689-703. doi: 10.3934/jimo.2018065 [18] H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183 [19] Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861 [20] Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021082

Impact Factor:

Article outline

[Back to Top]