doi: 10.3934/jcd.2021011

Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics

1. 

Departamento de Matemáticas y Mecánica, IIMAS, UNAM, Apdo. Postal 20-126, 01000 Mexico City, Mexico, Current address: Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova, Via Trieste 63, 35121 Padova, Italy

2. 

School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK

* Corresponding author: Mats Vermeeren

Received  September 2020 Revised  February 2021 Published  May 2021

We propose a discretization of vector fields that are Hamiltonian up to multiplication by a positive function on the phase space that may be interpreted as a time reparametrization. We construct a family of maps, labeled by an arbitrary $ \ell \in \mathbb{N} $ indicating the desired order of accuracy, and prove that our method is structure preserving in the sense that the discrete flow is interpolated to order $ \ell $ by the flow of a continuous system possessing the same structure as the vector field that is being discretized. In particular, our discretization preserves a smooth measure on the phase space to the arbitrary order $ \ell $. We present applications to a remarkable class of nonholonomic mechanical systems that allow Hamiltonization. To our best knowledge, these results provide the first instance of a measure preserving discretization (to arbitrary order) of measure preserving nonholonomic systems.

Citation: Luis C. García-Naranjo, Mats Vermeeren. Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics. Journal of Computational Dynamics, doi: 10.3934/jcd.2021011
References:
[1]

A. Anahory Simoes, J. C. Marrero and D. Martín de Diego, Exact discrete Lagrangian mechanics for nonholonomic mechanics, preprint, 2020, arXiv: 2003.11362. Google Scholar

[2]

L. Bates and J. Śniatycki, Nonholonomic reduction, Reports on Mathematical Physics, 32 (1993), 99-115.  doi: 10.1016/0034-4877(93)90073-N.  Google Scholar

[3]

G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms, Journal of Statistical Physics, 74 (1994), 1117-1143.  doi: 10.1007/BF02188219.  Google Scholar

[4]

A. M. BlochP. KrishnaprasadJ. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Archive for Rational Mechanics and Analysis, 136 (1996), 21-99.  doi: 10.1007/BF02199365.  Google Scholar

[5]

A. V. Borisov and I. S. Mamaev, Isomorphism and Hamilton representation of some nonholonomic systems, Siberian Mathematical Journal, 48 (2007), 26-36.  doi: 10.1007/s11202-007-0004-6.  Google Scholar

[6]

A. V. Borisov and I. S. Mamaev, Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems, Regular and Chaotic Dynamics, 13 (2008), 443-490.  doi: 10.1134/S1560354708050079.  Google Scholar

[7]

A. V. BorisovI. S. Mamaev and I. A. Bizyaev, The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere, Regular and Chaotic Dynamics, 18 (2013), 277-328.  doi: 10.1134/S1560354713030064.  Google Scholar

[8]

R. C. CallejaA. Celletti and R. de la Llave, A KAM theory for conformally symplectic systems: Efficient algorithms and their validation, Journal of Differential Equations, 255 (2013), 978-1049.  doi: 10.1016/j.jde.2013.05.001.  Google Scholar

[9]

F. CantrijnJ. CortésM. De León and D. Martín de Diego, On the geometry of generalized Chaplygin systems, Mathematical Proceedings of the Cambridge Philosophical Society, 132 (2002), 323-351.  doi: 10.1017/S0305004101005679.  Google Scholar

[10]

S. A. Chaplygin, On the theory of motion of nonholonomic systems. The reducing-multiplier theorem, Regular and Chaotic Dynamics, 13 (2008), 369-376.  doi: 10.1134/S1560354708040102.  Google Scholar

[11]

J. Cortés and S. Martínez, Non-holonomic integrators, Nonlinearity, 14 (2001), 1365-1392.  doi: 10.1088/0951-7715/14/5/322.  Google Scholar

[12]

K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization, in The Breadth of Symplectic and Poisson Geometry Birkhäuser Boston, Boston, MA, (2005), 75–120. doi: 10.1007/0-8176-4419-9_4.  Google Scholar

[13]

Y. N. Fedorov and B. Jovanovic, Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces, Journal of Nonlinear Science, 14 (2004), 341-381.  doi: 10.1007/s00332-004-0603-3.  Google Scholar

[14]

Y. N. Fedorov and B. Jovanović, Hamiltonization of the generalized Veselova LR system, Regular and Chaotic Dynamics, 14 (2009), 495-505.  doi: 10.1134/S1560354709040066.  Google Scholar

[15]

Y. N. FedorovL. C. García-Naranjo and J. C. Marrero, Unimodularity and preservation of volumes in nonholonomic mechanics, Journal of Nonlinear Science, 25 (2015), 203-246.  doi: 10.1007/s00332-014-9227-4.  Google Scholar

[16]

O. E. FernandezT. Mestdag and A. M. Bloch, A generalization of Chaplygin's reducibility theorem, Regular and Chaotic Dynamics, 14 (2009), 635-655.  doi: 10.1134/S1560354709060033.  Google Scholar

[17]

O. E. FernandezA. M. Bloch and P. J. Olver, Variational integrators for Hamiltonizable nonholonomic systems, Journal of Geometric Mechanics, 4 (2012), 137-163.  doi: 10.3934/jgm.2012.4.137.  Google Scholar

[18]

O. E. Fernandez, Poincaré transformations in nonholonomic mechanics, Applied Mathematics Letters, 43 (2015), 96-100.  doi: 10.1016/j.aml.2014.12.004.  Google Scholar

[19]

S. FerraroD. Iglesias and D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics, Nonlinearity, 21 (2008), 1911-1928.  doi: 10.1088/0951-7715/21/8/009.  Google Scholar

[20]

S. FerraroF. Jiménez and D. Martín de Diego, New developments on the geometric nonholonomic integrator, Nonlinearity, 28 (2015), 871-900.  doi: 10.1088/0951-7715/28/4/871.  Google Scholar

[21]

L. C. García-Naranjo, Generalisation of Chaplygin's reducing multiplier theorem with an application to multi-dimensional nonholonomic dynamics, Journal of Physics A: Mathematical and Theoretical, 52 (2019), 205203, 16 pp. doi: 10.1088/1751-8121/ab15f8.  Google Scholar

[22]

L. C. García-Naranjo and J. C. Marrero, The geometry of nonholonomic Chaplygin systems revisited, Nonlinearity, 33 (2020), 1297-1341.  doi: 10.1088/1361-6544/ab5c0a.  Google Scholar

[23]

E. Hairer, Variable time step integration with symplectic methods, Applied Numerical Mathematics, 25 (1997), 219-227.  doi: 10.1016/S0168-9274(97)00061-5.  Google Scholar

[24]

E. Hairer and C. Lubich, The life-span of backward error analysis for numerical integrators, Numerische Mathematik, 76 (1997), 441-462.  doi: 10.1007/s002110050271.  Google Scholar

[25]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-30666-8.  Google Scholar

[26]

D. IglesiasJ. C. MarreroD. Martín de Diego and E. Martínez, Discrete nonholonomic lagrangian systems on lie groupoids, Journal of Nonlinear Science, 18 (2008), 221-276.  doi: 10.1007/s00332-007-9012-8.  Google Scholar

[27]

B. Jovanović, Note on a ball rolling over a sphere: Integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization, Theoretical and Applied Mechanics, 46 (2019), 97-108.  doi: 10.2298/TAM190322003J.  Google Scholar

[28]

M. KobilarovJ. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 61-84.  doi: 10.3934/dcdss.2010.3.61.  Google Scholar

[29]

J. Koiller, Reduction of some classical non-holonomic systems with symmetry, Archive for Rational Mechanics and Analysis, 118 (1992), 113-148.  doi: 10.1007/BF00375092.  Google Scholar

[30]

B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics Cambridge Monographs on Applied and Computational Mathematics, vol. 14, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511614118.  Google Scholar

[31]

T. Levi-Civita, Sur la résolution qualitative du probleme restreint des trois corps, Acta Mathematica, 30 (1906), 305-327.  doi: 10.1007/BF02418577.  Google Scholar

[32]

C.-M. Marle, A property of conformally Hamiltonian vector fields; Application to the Kepler problem, Journal of Geometric Mechanics, 4 (2012), 181-206.  doi: 10.3934/jgm.2012.4.181.  Google Scholar

[33]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.  Google Scholar

[34]

R. McLachlan and M. Perlmutter, Conformal Hamiltonian systems, Journal of Geometry and Physics, 39 (2001), 276-300.  doi: 10.1016/S0393-0440(01)00020-1.  Google Scholar

[35]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems, J. Nonlinear Sci., 16 (2006), 283-328.  doi: 10.1007/s00332-005-0698-1.  Google Scholar

[36]

K. Modin and O. Verdier, What makes nonholonomic integrators work?, Numerische Mathematik, 145 (2020), 405-435.  doi: 10.1007/s00211-020-01126-y.  Google Scholar

[37]

S. Reich, Backward error analysis for numerical integrators, SIAM Journal on Numerical Analysis, 36 (1999), 1549-1570.  doi: 10.1137/S0036142997329797.  Google Scholar

[38]

S. Stanchenko, Non-holonomic Chaplygin systems, Journal of Applied Mathematics and Mechanics, 53 (1989), 11-17.  doi: 10.1016/0021-8928(89)90126-3.  Google Scholar

[39]

M. Vermeeren, Modified equations for variational integrators, Numerische Mathematik, 137 (2017), 1001-1037.  doi: 10.1007/s00211-017-0896-4.  Google Scholar

[40]

M. Vermeeren, Support code for "Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics", https://github.com/mvermeeren/conf-ham-sys-2020. doi: 10.5281/zenodo.3988087.  Google Scholar

[41]

A. P. Veselov and L. Veselova, Integrable nonholonomic systems on Lie groups, Mathematical Notes of the Academy of Sciences of the USSR, 44 (1988), 810-819.  doi: 10.1007/BF01158420.  Google Scholar

[42]

P. Woronetz, Über die Bewegung eines starren Körpers, der ohne Gleitung auf einer beliebigen Fläche rollt, Mathematische Annalen, 70 (1911), 410-453.  doi: 10.1007/BF01564505.  Google Scholar

show all references

References:
[1]

A. Anahory Simoes, J. C. Marrero and D. Martín de Diego, Exact discrete Lagrangian mechanics for nonholonomic mechanics, preprint, 2020, arXiv: 2003.11362. Google Scholar

[2]

L. Bates and J. Śniatycki, Nonholonomic reduction, Reports on Mathematical Physics, 32 (1993), 99-115.  doi: 10.1016/0034-4877(93)90073-N.  Google Scholar

[3]

G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms, Journal of Statistical Physics, 74 (1994), 1117-1143.  doi: 10.1007/BF02188219.  Google Scholar

[4]

A. M. BlochP. KrishnaprasadJ. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Archive for Rational Mechanics and Analysis, 136 (1996), 21-99.  doi: 10.1007/BF02199365.  Google Scholar

[5]

A. V. Borisov and I. S. Mamaev, Isomorphism and Hamilton representation of some nonholonomic systems, Siberian Mathematical Journal, 48 (2007), 26-36.  doi: 10.1007/s11202-007-0004-6.  Google Scholar

[6]

A. V. Borisov and I. S. Mamaev, Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems, Regular and Chaotic Dynamics, 13 (2008), 443-490.  doi: 10.1134/S1560354708050079.  Google Scholar

[7]

A. V. BorisovI. S. Mamaev and I. A. Bizyaev, The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere, Regular and Chaotic Dynamics, 18 (2013), 277-328.  doi: 10.1134/S1560354713030064.  Google Scholar

[8]

R. C. CallejaA. Celletti and R. de la Llave, A KAM theory for conformally symplectic systems: Efficient algorithms and their validation, Journal of Differential Equations, 255 (2013), 978-1049.  doi: 10.1016/j.jde.2013.05.001.  Google Scholar

[9]

F. CantrijnJ. CortésM. De León and D. Martín de Diego, On the geometry of generalized Chaplygin systems, Mathematical Proceedings of the Cambridge Philosophical Society, 132 (2002), 323-351.  doi: 10.1017/S0305004101005679.  Google Scholar

[10]

S. A. Chaplygin, On the theory of motion of nonholonomic systems. The reducing-multiplier theorem, Regular and Chaotic Dynamics, 13 (2008), 369-376.  doi: 10.1134/S1560354708040102.  Google Scholar

[11]

J. Cortés and S. Martínez, Non-holonomic integrators, Nonlinearity, 14 (2001), 1365-1392.  doi: 10.1088/0951-7715/14/5/322.  Google Scholar

[12]

K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization, in The Breadth of Symplectic and Poisson Geometry Birkhäuser Boston, Boston, MA, (2005), 75–120. doi: 10.1007/0-8176-4419-9_4.  Google Scholar

[13]

Y. N. Fedorov and B. Jovanovic, Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces, Journal of Nonlinear Science, 14 (2004), 341-381.  doi: 10.1007/s00332-004-0603-3.  Google Scholar

[14]

Y. N. Fedorov and B. Jovanović, Hamiltonization of the generalized Veselova LR system, Regular and Chaotic Dynamics, 14 (2009), 495-505.  doi: 10.1134/S1560354709040066.  Google Scholar

[15]

Y. N. FedorovL. C. García-Naranjo and J. C. Marrero, Unimodularity and preservation of volumes in nonholonomic mechanics, Journal of Nonlinear Science, 25 (2015), 203-246.  doi: 10.1007/s00332-014-9227-4.  Google Scholar

[16]

O. E. FernandezT. Mestdag and A. M. Bloch, A generalization of Chaplygin's reducibility theorem, Regular and Chaotic Dynamics, 14 (2009), 635-655.  doi: 10.1134/S1560354709060033.  Google Scholar

[17]

O. E. FernandezA. M. Bloch and P. J. Olver, Variational integrators for Hamiltonizable nonholonomic systems, Journal of Geometric Mechanics, 4 (2012), 137-163.  doi: 10.3934/jgm.2012.4.137.  Google Scholar

[18]

O. E. Fernandez, Poincaré transformations in nonholonomic mechanics, Applied Mathematics Letters, 43 (2015), 96-100.  doi: 10.1016/j.aml.2014.12.004.  Google Scholar

[19]

S. FerraroD. Iglesias and D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics, Nonlinearity, 21 (2008), 1911-1928.  doi: 10.1088/0951-7715/21/8/009.  Google Scholar

[20]

S. FerraroF. Jiménez and D. Martín de Diego, New developments on the geometric nonholonomic integrator, Nonlinearity, 28 (2015), 871-900.  doi: 10.1088/0951-7715/28/4/871.  Google Scholar

[21]

L. C. García-Naranjo, Generalisation of Chaplygin's reducing multiplier theorem with an application to multi-dimensional nonholonomic dynamics, Journal of Physics A: Mathematical and Theoretical, 52 (2019), 205203, 16 pp. doi: 10.1088/1751-8121/ab15f8.  Google Scholar

[22]

L. C. García-Naranjo and J. C. Marrero, The geometry of nonholonomic Chaplygin systems revisited, Nonlinearity, 33 (2020), 1297-1341.  doi: 10.1088/1361-6544/ab5c0a.  Google Scholar

[23]

E. Hairer, Variable time step integration with symplectic methods, Applied Numerical Mathematics, 25 (1997), 219-227.  doi: 10.1016/S0168-9274(97)00061-5.  Google Scholar

[24]

E. Hairer and C. Lubich, The life-span of backward error analysis for numerical integrators, Numerische Mathematik, 76 (1997), 441-462.  doi: 10.1007/s002110050271.  Google Scholar

[25]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-30666-8.  Google Scholar

[26]

D. IglesiasJ. C. MarreroD. Martín de Diego and E. Martínez, Discrete nonholonomic lagrangian systems on lie groupoids, Journal of Nonlinear Science, 18 (2008), 221-276.  doi: 10.1007/s00332-007-9012-8.  Google Scholar

[27]

B. Jovanović, Note on a ball rolling over a sphere: Integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization, Theoretical and Applied Mechanics, 46 (2019), 97-108.  doi: 10.2298/TAM190322003J.  Google Scholar

[28]

M. KobilarovJ. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 61-84.  doi: 10.3934/dcdss.2010.3.61.  Google Scholar

[29]

J. Koiller, Reduction of some classical non-holonomic systems with symmetry, Archive for Rational Mechanics and Analysis, 118 (1992), 113-148.  doi: 10.1007/BF00375092.  Google Scholar

[30]

B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics Cambridge Monographs on Applied and Computational Mathematics, vol. 14, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511614118.  Google Scholar

[31]

T. Levi-Civita, Sur la résolution qualitative du probleme restreint des trois corps, Acta Mathematica, 30 (1906), 305-327.  doi: 10.1007/BF02418577.  Google Scholar

[32]

C.-M. Marle, A property of conformally Hamiltonian vector fields; Application to the Kepler problem, Journal of Geometric Mechanics, 4 (2012), 181-206.  doi: 10.3934/jgm.2012.4.181.  Google Scholar

[33]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.  Google Scholar

[34]

R. McLachlan and M. Perlmutter, Conformal Hamiltonian systems, Journal of Geometry and Physics, 39 (2001), 276-300.  doi: 10.1016/S0393-0440(01)00020-1.  Google Scholar

[35]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems, J. Nonlinear Sci., 16 (2006), 283-328.  doi: 10.1007/s00332-005-0698-1.  Google Scholar

[36]

K. Modin and O. Verdier, What makes nonholonomic integrators work?, Numerische Mathematik, 145 (2020), 405-435.  doi: 10.1007/s00211-020-01126-y.  Google Scholar

[37]

S. Reich, Backward error analysis for numerical integrators, SIAM Journal on Numerical Analysis, 36 (1999), 1549-1570.  doi: 10.1137/S0036142997329797.  Google Scholar

[38]

S. Stanchenko, Non-holonomic Chaplygin systems, Journal of Applied Mathematics and Mechanics, 53 (1989), 11-17.  doi: 10.1016/0021-8928(89)90126-3.  Google Scholar

[39]

M. Vermeeren, Modified equations for variational integrators, Numerische Mathematik, 137 (2017), 1001-1037.  doi: 10.1007/s00211-017-0896-4.  Google Scholar

[40]

M. Vermeeren, Support code for "Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics", https://github.com/mvermeeren/conf-ham-sys-2020. doi: 10.5281/zenodo.3988087.  Google Scholar

[41]

A. P. Veselov and L. Veselova, Integrable nonholonomic systems on Lie groups, Mathematical Notes of the Academy of Sciences of the USSR, 44 (1988), 810-819.  doi: 10.1007/BF01158420.  Google Scholar

[42]

P. Woronetz, Über die Bewegung eines starren Körpers, der ohne Gleitung auf einer beliebigen Fläche rollt, Mathematische Annalen, 70 (1911), 410-453.  doi: 10.1007/BF01564505.  Google Scholar

Figure 1.  Evolution of a spherical cloud (black) of $ 5000 $ points with radius $ 0.3 $ at times $ 0 $, $ 2.75 $, $ \ldots $, $ 13.75 $, projected to the $ (x,p_x) $ and $ (y,p_y) $ planes, using a high-accuracy method. The longer the time, the lighter the color
Figure 2.  Evolution of the volume of a spherical cloud of $ 120 $ points, arranged in a $ 600 $-cell, with radius $ 0.01 $ and centered around $ (x,y,p_x,p_y) = (0,0,1,1) $, using our proposed method $ \Phi_h^{(4)} $ with time step $ h = 0.25 $ for the five variational integrators in (24) and a high-accuracy reference solution. The volume is computed with respect to the measure indicated at the top of each graph
Figure 3.  Application of $ \Phi_h^{(4)} $ to the nonholonomic particle in a harmonic potential for each discretization in (24): overview of the numerical values of the different energy functions involved in the algorithm. The initial condition is $ (x,y,p_x),p_y) = (0,0,1,1) $ and the time step $ h = 0.25 $
23,37,17] with time step $ h = 0.25 $ for the five variational integrators in (24) and a high-accuracy reference solution. The volume is computed with respect to the measure indicated at the top of each graph">Figure 4.  Evolution of the volume of a spherical cloud of $ 120 $ points, arranged in a $ 600 $-cell, with radius $ 0.01 $ and centered around $ (x,y,p_x,p_y) = (0,0,1,1) $, using the method $ \Phi_h^{(0)} $ proposed in [23,37,17] with time step $ h = 0.25 $ for the five variational integrators in (24) and a high-accuracy reference solution. The volume is computed with respect to the measure indicated at the top of each graph
Figure 5.  Application of $ \Phi_h^{(4)} $ to the free nonholonomic particle for each discretization in (24). Overview of the numerical values of the different energy functions involved in the algorithm and error norm of the solutions. The initial condition is $ (x,y,p_x,p_y) = (0,0,1,1) $ and the step size $ h = 0.25 $
Figure 6.  Application of $ \Phi_h^{(0)} $ to the free nonholonomic particle for each discretization in (24): overview of the numerical values of the different energy functions involved in the algorithm and error norm of the solutions. The initial condition and the time step coincide with those of Figure 5
Table 1.  Overview of all relevant Hamiltonians
Eqn. Notation Name Equations of motion
Original system
(3) $ H $ Conformal Hamiltonian $ {\bf{i}}_{ X} \Omega = \mathcal{N} \mathsf{d} H $
(5) $ K_E = \mathcal{N}(H-E) $ Altered Hamiltonian $ {\bf{i}}_{ X} \Omega = \mathsf{d} K_E $
on $ \{ K_E = 0 \} $
Modified system, interpolating numerical solutions
(16) $ K_{mod} $ Modified altered Hamiltonian $ {\bf{i}}_{X_{mod}} \Omega = \mathsf{d} K_{mod} $
on $ \{ K_{mod} = 0 \} $
$ K_{mod}^{(\ell)} $ Truncated modified altered Hamiltonian
(18) $ \mathcal{E} $ Modified conformal Hamiltonian $ {\bf{i}}_{X_{mod}} \Omega = \mathcal{N}_{mod} \mathsf{d} \mathcal{E} $
$ \mathcal{E}^{(\ell)} $ Truncated modified conformal Hamiltonian
Eqn. Notation Name Equations of motion
Original system
(3) $ H $ Conformal Hamiltonian $ {\bf{i}}_{ X} \Omega = \mathcal{N} \mathsf{d} H $
(5) $ K_E = \mathcal{N}(H-E) $ Altered Hamiltonian $ {\bf{i}}_{ X} \Omega = \mathsf{d} K_E $
on $ \{ K_E = 0 \} $
Modified system, interpolating numerical solutions
(16) $ K_{mod} $ Modified altered Hamiltonian $ {\bf{i}}_{X_{mod}} \Omega = \mathsf{d} K_{mod} $
on $ \{ K_{mod} = 0 \} $
$ K_{mod}^{(\ell)} $ Truncated modified altered Hamiltonian
(18) $ \mathcal{E} $ Modified conformal Hamiltonian $ {\bf{i}}_{X_{mod}} \Omega = \mathcal{N}_{mod} \mathsf{d} \mathcal{E} $
$ \mathcal{E}^{(\ell)} $ Truncated modified conformal Hamiltonian
[1]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[2]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[3]

Juan Carlos Marrero. Hamiltonian mechanical systems on Lie algebroids, unimodularity and preservation of volumes. Journal of Geometric Mechanics, 2010, 2 (3) : 243-263. doi: 10.3934/jgm.2010.2.243

[4]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[5]

Andrew D. Lewis. Nonholonomic and constrained variational mechanics. Journal of Geometric Mechanics, 2020, 12 (2) : 165-308. doi: 10.3934/jgm.2020013

[6]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[7]

Thomas Hagen, Andreas Johann, Hans-Peter Kruse, Florian Rupp, Sebastian Walcher. Dynamical systems and geometric mechanics: A special issue in Honor of Jürgen Scheurle. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : i-iii. doi: 10.3934/dcdss.20204i

[8]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[9]

Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267

[10]

Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019

[11]

François Gay-Balmaz, Darryl D. Holm. Predicting uncertainty in geometric fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1229-1242. doi: 10.3934/dcdss.2020071

[12]

Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220

[13]

Kurt Ehlers. Geometric equivalence on nonholonomic three-manifolds. Conference Publications, 2003, 2003 (Special) : 246-255. doi: 10.3934/proc.2003.2003.246

[14]

Charles-Michel Marle. A property of conformally Hamiltonian vector fields; Application to the Kepler problem. Journal of Geometric Mechanics, 2012, 4 (2) : 181-206. doi: 10.3934/jgm.2012.4.181

[15]

P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1

[16]

Alexis Arnaudon, So Takao. Networks of coadjoint orbits: From geometric to statistical mechanics. Journal of Geometric Mechanics, 2019, 11 (4) : 447-485. doi: 10.3934/jgm.2019023

[17]

Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022

[18]

Amadeu Delshams, Rafael de la Llave and Tere M. Seara. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Announcement of results. Electronic Research Announcements, 2003, 9: 125-134.

[19]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

[20]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

 Impact Factor: 

Metrics

  • PDF downloads (33)
  • HTML views (49)
  • Cited by (0)

Other articles
by authors

[Back to Top]