[1]
|
A. Anahory Simoes, J. C. Marrero and D. Martín de Diego, Exact discrete Lagrangian mechanics for nonholonomic mechanics, preprint, 2020, arXiv: 2003.11362.
|
[2]
|
L. Bates and J. Śniatycki, Nonholonomic reduction, Reports on Mathematical Physics, 32 (1993), 99-115.
doi: 10.1016/0034-4877(93)90073-N.
|
[3]
|
G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms, Journal of Statistical Physics, 74 (1994), 1117-1143.
doi: 10.1007/BF02188219.
|
[4]
|
A. M. Bloch, P. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Archive for Rational Mechanics and Analysis, 136 (1996), 21-99.
doi: 10.1007/BF02199365.
|
[5]
|
A. V. Borisov and I. S. Mamaev, Isomorphism and Hamilton representation of some nonholonomic systems, Siberian Mathematical Journal, 48 (2007), 26-36.
doi: 10.1007/s11202-007-0004-6.
|
[6]
|
A. V. Borisov and I. S. Mamaev, Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems, Regular and Chaotic Dynamics, 13 (2008), 443-490.
doi: 10.1134/S1560354708050079.
|
[7]
|
A. V. Borisov, I. S. Mamaev and I. A. Bizyaev, The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere, Regular and Chaotic Dynamics, 18 (2013), 277-328.
doi: 10.1134/S1560354713030064.
|
[8]
|
R. C. Calleja, A. Celletti and R. de la Llave, A KAM theory for conformally symplectic systems: Efficient algorithms and their validation, Journal of Differential Equations, 255 (2013), 978-1049.
doi: 10.1016/j.jde.2013.05.001.
|
[9]
|
F. Cantrijn, J. Cortés, M. De León and D. Martín de Diego, On the geometry of generalized Chaplygin systems, Mathematical Proceedings of the Cambridge Philosophical Society, 132 (2002), 323-351.
doi: 10.1017/S0305004101005679.
|
[10]
|
S. A. Chaplygin, On the theory of motion of nonholonomic systems. The reducing-multiplier theorem, Regular and Chaotic Dynamics, 13 (2008), 369-376.
doi: 10.1134/S1560354708040102.
|
[11]
|
J. Cortés and S. Martínez, Non-holonomic integrators, Nonlinearity, 14 (2001), 1365-1392.
doi: 10.1088/0951-7715/14/5/322.
|
[12]
|
K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization, in The Breadth of Symplectic and Poisson Geometry Birkhäuser Boston, Boston, MA, (2005), 75–120.
doi: 10.1007/0-8176-4419-9_4.
|
[13]
|
Y. N. Fedorov and B. Jovanovic, Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces, Journal of Nonlinear Science, 14 (2004), 341-381.
doi: 10.1007/s00332-004-0603-3.
|
[14]
|
Y. N. Fedorov and B. Jovanović, Hamiltonization of the generalized Veselova LR system, Regular and Chaotic Dynamics, 14 (2009), 495-505.
doi: 10.1134/S1560354709040066.
|
[15]
|
Y. N. Fedorov, L. C. García-Naranjo and J. C. Marrero, Unimodularity and preservation of volumes in nonholonomic mechanics, Journal of Nonlinear Science, 25 (2015), 203-246.
doi: 10.1007/s00332-014-9227-4.
|
[16]
|
O. E. Fernandez, T. Mestdag and A. M. Bloch, A generalization of Chaplygin's reducibility theorem, Regular and Chaotic Dynamics, 14 (2009), 635-655.
doi: 10.1134/S1560354709060033.
|
[17]
|
O. E. Fernandez, A. M. Bloch and P. J. Olver, Variational integrators for Hamiltonizable nonholonomic systems, Journal of Geometric Mechanics, 4 (2012), 137-163.
doi: 10.3934/jgm.2012.4.137.
|
[18]
|
O. E. Fernandez, Poincaré transformations in nonholonomic mechanics, Applied Mathematics Letters, 43 (2015), 96-100.
doi: 10.1016/j.aml.2014.12.004.
|
[19]
|
S. Ferraro, D. Iglesias and D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics, Nonlinearity, 21 (2008), 1911-1928.
doi: 10.1088/0951-7715/21/8/009.
|
[20]
|
S. Ferraro, F. Jiménez and D. Martín de Diego, New developments on the geometric nonholonomic integrator, Nonlinearity, 28 (2015), 871-900.
doi: 10.1088/0951-7715/28/4/871.
|
[21]
|
L. C. García-Naranjo, Generalisation of Chaplygin's reducing multiplier theorem with an application to multi-dimensional nonholonomic dynamics, Journal of Physics A: Mathematical and Theoretical, 52 (2019), 205203, 16 pp.
doi: 10.1088/1751-8121/ab15f8.
|
[22]
|
L. C. García-Naranjo and J. C. Marrero, The geometry of nonholonomic Chaplygin systems revisited, Nonlinearity, 33 (2020), 1297-1341.
doi: 10.1088/1361-6544/ab5c0a.
|
[23]
|
E. Hairer, Variable time step integration with symplectic methods, Applied Numerical Mathematics, 25 (1997), 219-227.
doi: 10.1016/S0168-9274(97)00061-5.
|
[24]
|
E. Hairer and C. Lubich, The life-span of backward error analysis for numerical integrators, Numerische Mathematik, 76 (1997), 441-462.
doi: 10.1007/s002110050271.
|
[25]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-30666-8.
|
[26]
|
D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic lagrangian systems on lie groupoids, Journal of Nonlinear Science, 18 (2008), 221-276.
doi: 10.1007/s00332-007-9012-8.
|
[27]
|
B. Jovanović, Note on a ball rolling over a sphere: Integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization, Theoretical and Applied Mechanics, 46 (2019), 97-108.
doi: 10.2298/TAM190322003J.
|
[28]
|
M. Kobilarov, J. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 61-84.
doi: 10.3934/dcdss.2010.3.61.
|
[29]
|
J. Koiller, Reduction of some classical non-holonomic systems with symmetry, Archive for Rational Mechanics and Analysis, 118 (1992), 113-148.
doi: 10.1007/BF00375092.
|
[30]
|
B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics Cambridge Monographs on Applied and Computational Mathematics, vol. 14, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511614118.
|
[31]
|
T. Levi-Civita, Sur la résolution qualitative du probleme restreint des trois corps, Acta Mathematica, 30 (1906), 305-327.
doi: 10.1007/BF02418577.
|
[32]
|
C.-M. Marle, A property of conformally Hamiltonian vector fields; Application to the Kepler problem, Journal of Geometric Mechanics, 4 (2012), 181-206.
doi: 10.3934/jgm.2012.4.181.
|
[33]
|
J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.
doi: 10.1017/S096249290100006X.
|
[34]
|
R. McLachlan and M. Perlmutter, Conformal Hamiltonian systems, Journal of Geometry and Physics, 39 (2001), 276-300.
doi: 10.1016/S0393-0440(01)00020-1.
|
[35]
|
R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems, J. Nonlinear Sci., 16 (2006), 283-328.
doi: 10.1007/s00332-005-0698-1.
|
[36]
|
K. Modin and O. Verdier, What makes nonholonomic integrators work?, Numerische Mathematik, 145 (2020), 405-435.
doi: 10.1007/s00211-020-01126-y.
|
[37]
|
S. Reich, Backward error analysis for numerical integrators, SIAM Journal on Numerical Analysis, 36 (1999), 1549-1570.
doi: 10.1137/S0036142997329797.
|
[38]
|
S. Stanchenko, Non-holonomic Chaplygin systems, Journal of Applied Mathematics and Mechanics, 53 (1989), 11-17.
doi: 10.1016/0021-8928(89)90126-3.
|
[39]
|
M. Vermeeren, Modified equations for variational integrators, Numerische Mathematik, 137 (2017), 1001-1037.
doi: 10.1007/s00211-017-0896-4.
|
[40]
|
M. Vermeeren, Support code for "Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics", https://github.com/mvermeeren/conf-ham-sys-2020.
doi: 10.5281/zenodo.3988087.
|
[41]
|
A. P. Veselov and L. Veselova, Integrable nonholonomic systems on Lie groups, Mathematical Notes of the Academy of Sciences of the USSR, 44 (1988), 810-819.
doi: 10.1007/BF01158420.
|
[42]
|
P. Woronetz, Über die Bewegung eines starren Körpers, der ohne Gleitung auf einer beliebigen Fläche rollt, Mathematische Annalen, 70 (1911), 410-453.
doi: 10.1007/BF01564505.
|