
- Previous Article
- JCD Home
- This Issue
-
Next Article
Computing Covariant Lyapunov Vectors in Hilbert spaces
Rigorous numerics for ODEs using Chebyshev series and domain decomposition
Department of Mathematics, VU Amsterdam, De Boelelaan 1111, 1081 HV Amsterdam, The Netherlands |
In this paper we present a rigorous numerical method for validating analytic solutions of nonlinear ODEs by using Chebyshev-series and domain decomposition. The idea is to define a Newton-like operator, whose fixed points correspond to solutions of the ODE, on the space of geometrically decaying Chebyshev coefficients, and to use the so-called radii-polynomial approach to prove that the operator has an isolated fixed point in a small neighborhood of a numerical approximation. The novelty of the proposed method is the use of Chebyshev series in combination with domain decomposition. In particular, a heuristic procedure based on the theory of Chebyshev approximations for analytic functions is presented to construct efficient grids for validating solutions of boundary value problems. The effectiveness of the proposed method is demonstrated by validating long periodic and connecting orbits in the Lorenz system for which validation without domain decomposition is not feasible.
References:
[1] |
G. Arioli and H. Koch,
Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation, Arch. Ration. Mech. Anal., 197 (2010), 1033-1051.
doi: 10.1007/s00205-010-0309-7. |
[2] |
G. Arioli and H. Koch,
Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation, Nonlinear Anal., 113 (2015), 51-70.
doi: 10.1016/j.na.2014.09.023. |
[3] |
G. Arioli and H. Koch,
Integration of dissipative partial differential equations: A case study, SIAM J. Appl. Dyn. Syst., 9 (2010), 1119-1133.
doi: 10.1137/10078298X. |
[4] |
A. W. Baker, M. Dellnitz and O. Junge,
A topological method for rigorously computing periodic orbits using Fourier modes, Discrete Contin. Dyn. Syst., 13 (2005), 901-920.
doi: 10.3934/dcds.2005.13.901. |
[5] |
R. Barrio, A. Dena and W. Tucker,
A database of rigorous and high-precision periodic orbits of the Lorenz model, Comput. Phys. Comm., 194 (2015), 76-83.
doi: 10.1016/j.cpc.2015.04.007. |
[6] |
M. Berz and K. Makino, Rigorous reachability analysis and domain decomposition of Taylor models, in International Workshop on Numerical Software Verification, Lecture Notes in Computer Science, 10381, Springer, Cham, 2017, 90-97.
doi: 10.1007/978-3-319-63501-9_7. |
[7] |
M. Berz and K. Makino,
Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models, Reliab. Comput., 4 (1998), 361-369.
doi: 10.1023/A:1024467732637. |
[8] |
J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications, Inc., Mineola, NY, 2001. |
[9] |
M. Breden and J.-P. Lessard,
Polynomial interpolation and a priori bootstrap for computer-assisted proofs in nonlinear ODEs, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2825-2858.
doi: 10.3934/dcdsb.2018164. |
[10] |
M. Breden, J.-P. Lessard and M. Vanicat,
Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: A 3-component reaction-diffusion system, Acta Appl. Math., 128 (2013), 113-152.
doi: 10.1007/s10440-013-9823-6. |
[11] |
B. Breuer, J. Horák, P. J. McKenna and M. Plum,
A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam, J. Differential Equations, 224 (2006), 60-97.
doi: 10.1016/j.jde.2005.07.016. |
[12] |
F. Bünger, A Taylor model toolbox for solving ODEs implemented in MATLAB/INTLAB, J. Comput. Appl. Math., 368 (2020), 20pp.
doi: 10.1016/j.cam.2019.112511. |
[13] |
J. Burgos-García, J.-P. Lessard and J. D. Mireles James, Spatial periodic orbits in the equilateral circular restricted four-body problem: Computer-assisted proofs of existence, Celestial Mech. Dynam. Astronom., 131 (2019), 36pp.
doi: 10.1007/s10569-018-9879-8. |
[14] |
X. Cabré, E. Fontich and R. de la Llave,
The parameterization method for invariant manifolds. â…¢. Overview and applications, J. Differential Equations, 218 (2005), 444-515.
doi: 10.1016/j.jde.2004.12.003. |
[15] |
CAPD, Computer assisted proofs in dynamics., Available from: http://capd.ii.uj.edu.pl. |
[16] |
B. A. Coomes, H. Koçak and K. J. Palmer,
Transversal connecting orbits from shadowing, Numer. Math., 106 (2007), 427-469.
doi: 10.1007/s00211-007-0065-2. |
[17] |
COSY, Center for Beam Theory and Dynamical Systems., Available from: http://bt.pa.msu.edu/index.htm. |
[18] |
S. Day, Y. Hiraoka, K. Mischaikow and T. Ogawa,
Rigorous numerics for global dynamics: A study of the Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst., 4 (2005), 1-31.
doi: 10.1137/040604479. |
[19] |
S. Day, J.-P. Lessard and K. Mischaikow,
Validated continuation for equilibria of PDEs, SIAM J. Numer. Anal, 45 (2007), 1398-1424.
doi: 10.1137/050645968. |
[20] |
T. A. Driscoll, N. Hale and L. N. Trefethen, Chebfun Guide, Pafnuty Publications, Oxford, 2014. Available from: http://www.chebfun.org/. |
[21] |
O. Fogelklou, W. Tucker, G. Kreiss and M. Siklosi,
A computer-assisted proof of the existence of solutions to a boundary value problem with an integral boundary condition, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1227-1243.
doi: 10.1016/j.cnsns.2010.07.008. |
[22] |
M. Gameiro, T. Gedeon, W. Kalies, H. Kokubu, K. Mischaikow and H. Oka,
Topological horseshoes of traveling waves for a fast-slow predator-prey system, J. Dynam. Differential Equations, 19 (2007), 623-654.
doi: 10.1007/s10884-006-9013-6. |
[23] |
M. Gameiro and J.-P. Lessard,
Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs, J. Differential Equations, 249 (2010), 2237-2268.
doi: 10.1016/j.jde.2010.07.002. |
[24] |
P. Gonnet, R. Pachón and L. N. Trefethen,
Robust rational interpolation and least-squares, Electron. Trans. Numer. Anal., 38 (2011), 146-167.
|
[25] |
A. Hungria, J.-P. Lessard and J. D. Mireles James,
Rigorous numerics for analytic solutions of differential equations: The radii polynomial approach, Math. Comp., 85 (2016), 1427-1459.
doi: 10.1090/mcom/3046. |
[26] |
M. Kashiwagi, KV - A C++ library for verified numerical computation., Available from: http://verifiedby.me/kv/index-e.html. |
[27] |
J.-P. Lessard, J. D. Mireles James and J. Ransford,
Automatic differentiation for Fourier series and the radii polynomial approach, Phys. D, 334 (2016), 174-186.
doi: 10.1016/j.physd.2016.02.007. |
[28] |
J.-P. Lessard, J. D. Mireles James and C. Reinhardt,
Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields, J. Dynam. Differential Equations, 26 (2014), 267-313.
doi: 10.1007/s10884-014-9367-0. |
[29] |
J.-P. Lessard and C. Reinhardt,
Rigorous numerics for nonlinear differential equations using Chebyshev series, SIAM J. Numer. Anal, 52 (2014), 1-22.
doi: 10.1137/13090883X. |
[30] |
R. J. Lohner, Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value problems, in Computational Ordinary Differential Equations, Inst. Math. Appl. Conf. Ser. New Ser., 39, Oxford Univ. Press, New York, 1992,425-435. |
[31] |
R. J. Lohner, Enclosing the solutions of ordinary initial and boundary value problems, in Computerarithmetic, Teubner, Stuttgart, 1987,255-286. |
[32] |
K. Makino and M. Berz, Verified computations using Taylor models and their applications, in International Workshop on Numerical Software Verification, Lecture Notes in Computer Science, 10381, Springer, Cham, 2017, 3-13.
doi: 10.1007/978-3-319-63501-9_1. |
[33] |
J. C. Mason and D. C. Hanscomb, Chebyshev Polynomials, Chapman & Hall/CRC, Boca Raton, FL, 2003. |
[34] |
R. Pachón, P. Gonnet and J. van Deun,
Fast and stable rational interpolation in roots of unity and Chebyshev points, SIAM J. Numer. Anal, 50 (2012), 1713-1734.
doi: 10.1137/100797291. |
[35] |
L. N. Rump, INTLAB - INTerval LABoratory, in Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht, 1999, 77-104. Available from: http://www.ti3.tuhh.de/rump/. |
[36] |
L. N. Trefethen, Approximation Theory and Approximation Practice, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013. |
[37] |
J. B. van den Berg, C. M. Groothedde and J. F. Williams,
Rigorous computation of a radially symmetric localized solution in a Ginzburg-Landau problem, SIAM J. Appl. Dyn. Syst, 14 (2015), 423-447.
doi: 10.1137/140987973. |
[38] |
J. B. van den Berg, J.-P. Lessard and K. Mischaikow,
Global smooth solution curves using rigorous branch following, Math. Comp., 79 (2010), 1565-1584.
doi: 10.1090/S0025-5718-10-02325-2. |
[39] |
J. B. van den Berg, J. D. Mireles James, J.-P. Lessard and K. Mischaikow,
Rigorous numerics for symmetric connecting orbits: Even homoclinics of the Gray-Scott equation, SIAM J. Math. Anal., 43 (2011), 1557-1594.
doi: 10.1137/100812008. |
[40] |
J. B. van den Berg and R. Sheombarsing, MATLABcode for rigorous numerics for ODEs using Chebyshev-series and domain decomposition, 2021., Available from: http://www.few.vu.nl/janbouwe/code/domaindecomposition. |
[41] |
J. B. van den Berg and R. Sheombarsing,
Validated computations for connecting orbits in polynomial vector fields, Indag. Math. (N.S.), 31 (2020), 310-373.
doi: 10.1016/j.indag.2020.01.007. |
[42] |
M. Webb, Computing complex singularities of differential equations with Chebfun, SIAM Undergraduate Research Online, 2011. Available from: http://evoq-eval.siam.org/Portals/0/Publications/SIURO/Vol6/COMPUTING_COMPLEX_SINGULARITIES_Differential.pdf?ver=2018-04-06-151849-873. |
[43] |
D. Wilczak and P. Zgliczynski,
$C^n$-Lohner algorithm, Scheade Informaticae, 20 (2011), 9-46.
|
[44] |
D. Wilczak and P. Zgliczynski,
Heteroclinic connections between periodic orbits in planar restricted circular three-body problem - A computer assisted proof, Comm. Math. Phys., 234 (2003), 37-75.
doi: 10.1007/s00220-002-0709-0. |
[45] |
N. Yamamoto,
A numerical verification method for solutions of of boundary value problems with local uniqueness by Banach's fixed-point theorem, SIAM J. Numer. Anal, 35 (1998), 2004-2013.
doi: 10.1137/S0036142996304498. |
[46] |
P. Zgliczynski,
$C^1$-Lohner algorithm, Found. Comput. Math., 2 (2002), 429-465.
doi: 10.1007/s102080010025. |
show all references
References:
[1] |
G. Arioli and H. Koch,
Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation, Arch. Ration. Mech. Anal., 197 (2010), 1033-1051.
doi: 10.1007/s00205-010-0309-7. |
[2] |
G. Arioli and H. Koch,
Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation, Nonlinear Anal., 113 (2015), 51-70.
doi: 10.1016/j.na.2014.09.023. |
[3] |
G. Arioli and H. Koch,
Integration of dissipative partial differential equations: A case study, SIAM J. Appl. Dyn. Syst., 9 (2010), 1119-1133.
doi: 10.1137/10078298X. |
[4] |
A. W. Baker, M. Dellnitz and O. Junge,
A topological method for rigorously computing periodic orbits using Fourier modes, Discrete Contin. Dyn. Syst., 13 (2005), 901-920.
doi: 10.3934/dcds.2005.13.901. |
[5] |
R. Barrio, A. Dena and W. Tucker,
A database of rigorous and high-precision periodic orbits of the Lorenz model, Comput. Phys. Comm., 194 (2015), 76-83.
doi: 10.1016/j.cpc.2015.04.007. |
[6] |
M. Berz and K. Makino, Rigorous reachability analysis and domain decomposition of Taylor models, in International Workshop on Numerical Software Verification, Lecture Notes in Computer Science, 10381, Springer, Cham, 2017, 90-97.
doi: 10.1007/978-3-319-63501-9_7. |
[7] |
M. Berz and K. Makino,
Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models, Reliab. Comput., 4 (1998), 361-369.
doi: 10.1023/A:1024467732637. |
[8] |
J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications, Inc., Mineola, NY, 2001. |
[9] |
M. Breden and J.-P. Lessard,
Polynomial interpolation and a priori bootstrap for computer-assisted proofs in nonlinear ODEs, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2825-2858.
doi: 10.3934/dcdsb.2018164. |
[10] |
M. Breden, J.-P. Lessard and M. Vanicat,
Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: A 3-component reaction-diffusion system, Acta Appl. Math., 128 (2013), 113-152.
doi: 10.1007/s10440-013-9823-6. |
[11] |
B. Breuer, J. Horák, P. J. McKenna and M. Plum,
A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam, J. Differential Equations, 224 (2006), 60-97.
doi: 10.1016/j.jde.2005.07.016. |
[12] |
F. Bünger, A Taylor model toolbox for solving ODEs implemented in MATLAB/INTLAB, J. Comput. Appl. Math., 368 (2020), 20pp.
doi: 10.1016/j.cam.2019.112511. |
[13] |
J. Burgos-García, J.-P. Lessard and J. D. Mireles James, Spatial periodic orbits in the equilateral circular restricted four-body problem: Computer-assisted proofs of existence, Celestial Mech. Dynam. Astronom., 131 (2019), 36pp.
doi: 10.1007/s10569-018-9879-8. |
[14] |
X. Cabré, E. Fontich and R. de la Llave,
The parameterization method for invariant manifolds. â…¢. Overview and applications, J. Differential Equations, 218 (2005), 444-515.
doi: 10.1016/j.jde.2004.12.003. |
[15] |
CAPD, Computer assisted proofs in dynamics., Available from: http://capd.ii.uj.edu.pl. |
[16] |
B. A. Coomes, H. Koçak and K. J. Palmer,
Transversal connecting orbits from shadowing, Numer. Math., 106 (2007), 427-469.
doi: 10.1007/s00211-007-0065-2. |
[17] |
COSY, Center for Beam Theory and Dynamical Systems., Available from: http://bt.pa.msu.edu/index.htm. |
[18] |
S. Day, Y. Hiraoka, K. Mischaikow and T. Ogawa,
Rigorous numerics for global dynamics: A study of the Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst., 4 (2005), 1-31.
doi: 10.1137/040604479. |
[19] |
S. Day, J.-P. Lessard and K. Mischaikow,
Validated continuation for equilibria of PDEs, SIAM J. Numer. Anal, 45 (2007), 1398-1424.
doi: 10.1137/050645968. |
[20] |
T. A. Driscoll, N. Hale and L. N. Trefethen, Chebfun Guide, Pafnuty Publications, Oxford, 2014. Available from: http://www.chebfun.org/. |
[21] |
O. Fogelklou, W. Tucker, G. Kreiss and M. Siklosi,
A computer-assisted proof of the existence of solutions to a boundary value problem with an integral boundary condition, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1227-1243.
doi: 10.1016/j.cnsns.2010.07.008. |
[22] |
M. Gameiro, T. Gedeon, W. Kalies, H. Kokubu, K. Mischaikow and H. Oka,
Topological horseshoes of traveling waves for a fast-slow predator-prey system, J. Dynam. Differential Equations, 19 (2007), 623-654.
doi: 10.1007/s10884-006-9013-6. |
[23] |
M. Gameiro and J.-P. Lessard,
Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs, J. Differential Equations, 249 (2010), 2237-2268.
doi: 10.1016/j.jde.2010.07.002. |
[24] |
P. Gonnet, R. Pachón and L. N. Trefethen,
Robust rational interpolation and least-squares, Electron. Trans. Numer. Anal., 38 (2011), 146-167.
|
[25] |
A. Hungria, J.-P. Lessard and J. D. Mireles James,
Rigorous numerics for analytic solutions of differential equations: The radii polynomial approach, Math. Comp., 85 (2016), 1427-1459.
doi: 10.1090/mcom/3046. |
[26] |
M. Kashiwagi, KV - A C++ library for verified numerical computation., Available from: http://verifiedby.me/kv/index-e.html. |
[27] |
J.-P. Lessard, J. D. Mireles James and J. Ransford,
Automatic differentiation for Fourier series and the radii polynomial approach, Phys. D, 334 (2016), 174-186.
doi: 10.1016/j.physd.2016.02.007. |
[28] |
J.-P. Lessard, J. D. Mireles James and C. Reinhardt,
Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields, J. Dynam. Differential Equations, 26 (2014), 267-313.
doi: 10.1007/s10884-014-9367-0. |
[29] |
J.-P. Lessard and C. Reinhardt,
Rigorous numerics for nonlinear differential equations using Chebyshev series, SIAM J. Numer. Anal, 52 (2014), 1-22.
doi: 10.1137/13090883X. |
[30] |
R. J. Lohner, Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value problems, in Computational Ordinary Differential Equations, Inst. Math. Appl. Conf. Ser. New Ser., 39, Oxford Univ. Press, New York, 1992,425-435. |
[31] |
R. J. Lohner, Enclosing the solutions of ordinary initial and boundary value problems, in Computerarithmetic, Teubner, Stuttgart, 1987,255-286. |
[32] |
K. Makino and M. Berz, Verified computations using Taylor models and their applications, in International Workshop on Numerical Software Verification, Lecture Notes in Computer Science, 10381, Springer, Cham, 2017, 3-13.
doi: 10.1007/978-3-319-63501-9_1. |
[33] |
J. C. Mason and D. C. Hanscomb, Chebyshev Polynomials, Chapman & Hall/CRC, Boca Raton, FL, 2003. |
[34] |
R. Pachón, P. Gonnet and J. van Deun,
Fast and stable rational interpolation in roots of unity and Chebyshev points, SIAM J. Numer. Anal, 50 (2012), 1713-1734.
doi: 10.1137/100797291. |
[35] |
L. N. Rump, INTLAB - INTerval LABoratory, in Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht, 1999, 77-104. Available from: http://www.ti3.tuhh.de/rump/. |
[36] |
L. N. Trefethen, Approximation Theory and Approximation Practice, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013. |
[37] |
J. B. van den Berg, C. M. Groothedde and J. F. Williams,
Rigorous computation of a radially symmetric localized solution in a Ginzburg-Landau problem, SIAM J. Appl. Dyn. Syst, 14 (2015), 423-447.
doi: 10.1137/140987973. |
[38] |
J. B. van den Berg, J.-P. Lessard and K. Mischaikow,
Global smooth solution curves using rigorous branch following, Math. Comp., 79 (2010), 1565-1584.
doi: 10.1090/S0025-5718-10-02325-2. |
[39] |
J. B. van den Berg, J. D. Mireles James, J.-P. Lessard and K. Mischaikow,
Rigorous numerics for symmetric connecting orbits: Even homoclinics of the Gray-Scott equation, SIAM J. Math. Anal., 43 (2011), 1557-1594.
doi: 10.1137/100812008. |
[40] |
J. B. van den Berg and R. Sheombarsing, MATLABcode for rigorous numerics for ODEs using Chebyshev-series and domain decomposition, 2021., Available from: http://www.few.vu.nl/janbouwe/code/domaindecomposition. |
[41] |
J. B. van den Berg and R. Sheombarsing,
Validated computations for connecting orbits in polynomial vector fields, Indag. Math. (N.S.), 31 (2020), 310-373.
doi: 10.1016/j.indag.2020.01.007. |
[42] |
M. Webb, Computing complex singularities of differential equations with Chebfun, SIAM Undergraduate Research Online, 2011. Available from: http://evoq-eval.siam.org/Portals/0/Publications/SIURO/Vol6/COMPUTING_COMPLEX_SINGULARITIES_Differential.pdf?ver=2018-04-06-151849-873. |
[43] |
D. Wilczak and P. Zgliczynski,
$C^n$-Lohner algorithm, Scheade Informaticae, 20 (2011), 9-46.
|
[44] |
D. Wilczak and P. Zgliczynski,
Heteroclinic connections between periodic orbits in planar restricted circular three-body problem - A computer assisted proof, Comm. Math. Phys., 234 (2003), 37-75.
doi: 10.1007/s00220-002-0709-0. |
[45] |
N. Yamamoto,
A numerical verification method for solutions of of boundary value problems with local uniqueness by Banach's fixed-point theorem, SIAM J. Numer. Anal, 35 (1998), 2004-2013.
doi: 10.1137/S0036142996304498. |
[46] |
P. Zgliczynski,
$C^1$-Lohner algorithm, Found. Comput. Math., 2 (2002), 429-465.
doi: 10.1007/s102080010025. |













Steps | Steps | ||||
awa | verifyode | awa | verifyode | ||
Steps | Steps | ||||
awa | verifyode | awa | verifyode | ||
[1] |
Aimin Huang, Roger Temam. The linear hyperbolic initial and boundary value problems in a domain with corners. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1627-1665. doi: 10.3934/dcdsb.2014.19.1627 |
[2] |
Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems and Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163 |
[3] |
Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control and Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024 |
[4] |
V. A. Dougalis, D. E. Mitsotakis, J.-C. Saut. On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1191-1204. doi: 10.3934/dcds.2009.23.1191 |
[5] |
Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure and Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297 |
[6] |
Colin J. Cotter, Darryl D. Holm. Geodesic boundary value problems with symmetry. Journal of Geometric Mechanics, 2010, 2 (1) : 51-68. doi: 10.3934/jgm.2010.2.51 |
[7] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[8] |
Laurence Halpern, Jeffrey Rauch. Hyperbolic boundary value problems with trihedral corners. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4403-4450. doi: 10.3934/dcds.2016.36.4403 |
[9] |
Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760 |
[10] |
J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177 |
[11] |
Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems and Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1 |
[12] |
G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377-384. doi: 10.3934/proc.2009.2009.377 |
[13] |
John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283 |
[14] |
Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43 |
[15] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[16] |
Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851 |
[17] |
John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83 |
[18] |
K. Q. Lan, G. C. Yang. Optimal constants for two point boundary value problems. Conference Publications, 2007, 2007 (Special) : 624-633. doi: 10.3934/proc.2007.2007.624 |
[19] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems and Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[20] |
J. R. L. Webb. Remarks on positive solutions of some three point boundary value problems. Conference Publications, 2003, 2003 (Special) : 905-915. doi: 10.3934/proc.2003.2003.905 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]