doi: 10.3934/jcd.2021016
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Computing Reeb dynamics on four-dimensional convex polytopes

Department of Mathematics, University of California, Berkeley, CA 94720, USA

Received  September 2020 Revised  July 2021 Early access August 2021

Fund Project: JC was partially supported by an NSF Graduate Research Fellowship. MH was partially supported by NSF grant DMS-1708899, a Simons Fellowship, and a Humboldt Research Award

We study the combinatorial Reeb flow on the boundary of a four-dimensional convex polytope. We establish a correspondence between "combinatorial Reeb orbits" for a polytope, and ordinary Reeb orbits for a smoothing of the polytope, respecting action and Conley-Zehnder index. One can then use a computer to find all combinatorial Reeb orbits up to a given action and Conley-Zehnder index. We present some results of experiments testing Viterbo's conjecture and related conjectures. In particular, we have found some new examples of polytopes with systolic ratio $ 1 $.

Citation: Julian Chaidez, Michael Hutchings. Computing Reeb dynamics on four-dimensional convex polytopes. Journal of Computational Dynamics, doi: 10.3934/jcd.2021016
References:
[1]

A. AbbondandoloB. BramhamU. L. Hryniewicz and P. A. S. Salomão, Sharp systolic inequalities for Reeb flows on the three-sphere, Invent. Math., 211 (2018), 687-778.  doi: 10.1007/s00222-017-0755-z.  Google Scholar

[2]

A. AbbondandoloB. BramhamU. L. Hryniewicz and P. A. S. Salomão, Systolic ratio, index of closed orbits and convexity for tight contact forms on the three-sphere, Compositio Math., 154 (2018), 2643-2680.  doi: 10.1112/S0010437X18007558.  Google Scholar

[3]

A. Abbondandolo and J. Kang, Symplectic homology of convex domains and Clarke's duality, preprint, arXiv: 1907.07779. Google Scholar

[4]

S. Artstein-AvidanR. Karasev and Y. Ostrover, From symplectic measurements to the Mahler conjecture, Duke Math. J., 163 (2014), 2003-2022.  doi: 10.1215/00127094-2794999.  Google Scholar

[5]

S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex bodies, IMRN, 2014, 165–193. doi: 10.1093/imrn/rns216.  Google Scholar

[6]

A. Balitskiy, Equiality cases in Viterbo's conjecture and isoperimeric billiard inequalities, Int. Math. Res. Not., 2020 (2020), 1957-1978.  doi: 10.1093/imrn/rny076.  Google Scholar

[7]

K. Cieliebak, H. Hofer, J. Latschev and F. Schlenk, Quantitative symplectic geometry, In Dynamics, Ergodic Theory, and Geometry, Math. Sci. Res. Inst. Publ., 54 (2007), Cambridge University Press, 1–44. doi: 10.1017/CBO9780511755187.002.  Google Scholar

[8]

I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z., 200 (1989), 355-378.  doi: 10.1007/BF01215653.  Google Scholar

[9]

I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics. II., Math Z., 203 (1990), 553-567.  doi: 10.1007/BF02570756.  Google Scholar

[10]

J. Gutt and M. Hutchings, Symplectic capacities from positive $S^1$-equivariant symplectic homology, Algebraic and Geometric Topology, 18 (2018), 3537-3600.  doi: 10.2140/agt.2018.18.3537.  Google Scholar

[11]

J. Gutt, M. Hutchings and V. G. B. Ramos, Examples around the strong Viterbo conjecture, preprint, arXiv: 2003.10854, to appear in Journal of Fixed Point Theory and Applications. Google Scholar

[12]

P. Haim-Kislev, On the symplectic size of convex polytopes, Geometric and Functional Analysis, 29 (2019), 440-463.  doi: 10.1007/s00039-019-00486-4.  Google Scholar

[13]

D. Hermann, Non-Equivalence of Symplectic Capacities for Open Sets with Restricted Contact Type Boundary., Prépublication d'Orsay numéro, 32 (1998). Google Scholar

[14]

H. HoferK. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces, Ann. Math., 148 (1998), 197-289.  doi: 10.2307/120994.  Google Scholar

[15]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994. doi: 10.1007/978-3-0348-8540-9.  Google Scholar

[16]

X. Hu and Y. Long, Closed characteristics on non-degenerate star-shaped hypersurfaces in $ {\mathbb R}^2n$, Science In China (Series A), 45 (2002), 1038-1052.  doi: 10.1007/BF02879987.  Google Scholar

[17]

M. Hutchings, Taubes's proof of the Weinstein conjecture in dimension three, Bull. AMS, 47 (2010), 73-125.  doi: 10.1090/S0273-0979-09-01282-8.  Google Scholar

[18]

M. Hutchings, Quantitative embedded contact homology, J. Diff. Geom., 88 (2011), 231-266.  doi: 10.4310/jdg/1320067647.  Google Scholar

[19]

U. Hryniewicz, private communication, 2017. Google Scholar

[20]

K. Irie, Symplectic homology of fiberwise convex sets and homology of loop spaces, arXiv: 1907.09749. Google Scholar

[21]

A. F. Künzle, Singular Hamiltonian systems and symplectic capacities, Singularities and Differential Equations, 171–187, Banach Center Publications 33, Polish Academy of Sciences, 1996.  Google Scholar

[22]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math, 31 (1978), 157-184.  doi: 10.1002/cpa.3160310203.  Google Scholar

[23]

F. Schlenk, Embedding Problems in Symplectic Geometry, Walter de Gruyter, 2005. doi: 10.1515/9783110199697.  Google Scholar

[24]

K. Siegel, Higher symplectic capacities, preprint, arXiv: 1902.01490. Google Scholar

[25]

C. Viterbo, Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc., 13 (2000), 411-431.  doi: 10.1090/S0894-0347-00-00328-3.  Google Scholar

[26]

A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Diff. Geom, 9 (1974), 513-517.  doi: 10.4310/jdg/1214432547.  Google Scholar

show all references

References:
[1]

A. AbbondandoloB. BramhamU. L. Hryniewicz and P. A. S. Salomão, Sharp systolic inequalities for Reeb flows on the three-sphere, Invent. Math., 211 (2018), 687-778.  doi: 10.1007/s00222-017-0755-z.  Google Scholar

[2]

A. AbbondandoloB. BramhamU. L. Hryniewicz and P. A. S. Salomão, Systolic ratio, index of closed orbits and convexity for tight contact forms on the three-sphere, Compositio Math., 154 (2018), 2643-2680.  doi: 10.1112/S0010437X18007558.  Google Scholar

[3]

A. Abbondandolo and J. Kang, Symplectic homology of convex domains and Clarke's duality, preprint, arXiv: 1907.07779. Google Scholar

[4]

S. Artstein-AvidanR. Karasev and Y. Ostrover, From symplectic measurements to the Mahler conjecture, Duke Math. J., 163 (2014), 2003-2022.  doi: 10.1215/00127094-2794999.  Google Scholar

[5]

S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex bodies, IMRN, 2014, 165–193. doi: 10.1093/imrn/rns216.  Google Scholar

[6]

A. Balitskiy, Equiality cases in Viterbo's conjecture and isoperimeric billiard inequalities, Int. Math. Res. Not., 2020 (2020), 1957-1978.  doi: 10.1093/imrn/rny076.  Google Scholar

[7]

K. Cieliebak, H. Hofer, J. Latschev and F. Schlenk, Quantitative symplectic geometry, In Dynamics, Ergodic Theory, and Geometry, Math. Sci. Res. Inst. Publ., 54 (2007), Cambridge University Press, 1–44. doi: 10.1017/CBO9780511755187.002.  Google Scholar

[8]

I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z., 200 (1989), 355-378.  doi: 10.1007/BF01215653.  Google Scholar

[9]

I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics. II., Math Z., 203 (1990), 553-567.  doi: 10.1007/BF02570756.  Google Scholar

[10]

J. Gutt and M. Hutchings, Symplectic capacities from positive $S^1$-equivariant symplectic homology, Algebraic and Geometric Topology, 18 (2018), 3537-3600.  doi: 10.2140/agt.2018.18.3537.  Google Scholar

[11]

J. Gutt, M. Hutchings and V. G. B. Ramos, Examples around the strong Viterbo conjecture, preprint, arXiv: 2003.10854, to appear in Journal of Fixed Point Theory and Applications. Google Scholar

[12]

P. Haim-Kislev, On the symplectic size of convex polytopes, Geometric and Functional Analysis, 29 (2019), 440-463.  doi: 10.1007/s00039-019-00486-4.  Google Scholar

[13]

D. Hermann, Non-Equivalence of Symplectic Capacities for Open Sets with Restricted Contact Type Boundary., Prépublication d'Orsay numéro, 32 (1998). Google Scholar

[14]

H. HoferK. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces, Ann. Math., 148 (1998), 197-289.  doi: 10.2307/120994.  Google Scholar

[15]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994. doi: 10.1007/978-3-0348-8540-9.  Google Scholar

[16]

X. Hu and Y. Long, Closed characteristics on non-degenerate star-shaped hypersurfaces in $ {\mathbb R}^2n$, Science In China (Series A), 45 (2002), 1038-1052.  doi: 10.1007/BF02879987.  Google Scholar

[17]

M. Hutchings, Taubes's proof of the Weinstein conjecture in dimension three, Bull. AMS, 47 (2010), 73-125.  doi: 10.1090/S0273-0979-09-01282-8.  Google Scholar

[18]

M. Hutchings, Quantitative embedded contact homology, J. Diff. Geom., 88 (2011), 231-266.  doi: 10.4310/jdg/1320067647.  Google Scholar

[19]

U. Hryniewicz, private communication, 2017. Google Scholar

[20]

K. Irie, Symplectic homology of fiberwise convex sets and homology of loop spaces, arXiv: 1907.09749. Google Scholar

[21]

A. F. Künzle, Singular Hamiltonian systems and symplectic capacities, Singularities and Differential Equations, 171–187, Banach Center Publications 33, Polish Academy of Sciences, 1996.  Google Scholar

[22]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math, 31 (1978), 157-184.  doi: 10.1002/cpa.3160310203.  Google Scholar

[23]

F. Schlenk, Embedding Problems in Symplectic Geometry, Walter de Gruyter, 2005. doi: 10.1515/9783110199697.  Google Scholar

[24]

K. Siegel, Higher symplectic capacities, preprint, arXiv: 1902.01490. Google Scholar

[25]

C. Viterbo, Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc., 13 (2000), 411-431.  doi: 10.1090/S0894-0347-00-00328-3.  Google Scholar

[26]

A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Diff. Geom, 9 (1974), 513-517.  doi: 10.4310/jdg/1214432547.  Google Scholar

Figure 1.  We depict the tangent, normal and Reeb cones for two points $ p,q \in X $ in a polytope $ X \subset {\mathbb R}^2 $
Figure 2.  We depict sub-trajectories of the three types of orbits, in red. Each cube above represents a 3-face of a hypothetical 4-polytope
Figure 3.  An example of a flow graph with 4 nodes and 4 edges. The linear domains and flows are depicted above their corresponding nodes and edges
[1]

François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177-185. doi: 10.3934/era.2014.21.177

[2]

Ely Kerman. Displacement energy of coisotropic submanifolds and Hofer's geometry. Journal of Modern Dynamics, 2008, 2 (3) : 471-497. doi: 10.3934/jmd.2008.2.471

[3]

Frédéric Bourgeois, Kai Cieliebak, Tobias Ekholm. A note on Reeb dynamics on the tight 3-sphere. Journal of Modern Dynamics, 2007, 1 (4) : 597-613. doi: 10.3934/jmd.2007.1.597

[4]

Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry II: Numerical methods. Journal of Computational Dynamics, 2021, 8 (3) : 273-307. doi: 10.3934/jcd.2021012

[5]

Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry I: Symbolic foundations. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021018

[6]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[7]

Fiammetta Battaglia and Elisa Prato. Nonrational, nonsimple convex polytopes in symplectic geometry. Electronic Research Announcements, 2002, 8: 29-34.

[8]

Marcelo R. R. Alves. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds. Journal of Modern Dynamics, 2016, 10: 497-509. doi: 10.3934/jmd.2016.10.497

[9]

Răzvan M. Tudoran, Anania Gîrban. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 789-823. doi: 10.3934/dcdsb.2011.15.789

[10]

Dominik Wodarz. Computational modeling approaches to studying the dynamics of oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 939-957. doi: 10.3934/mbe.2013.10.939

[11]

Lambertus A. Peletier, Willem de Winter, An Vermeulen. Dynamics of a two-receptor binding model: How affinities and capacities translate into long and short time behaviour and physiological corollaries. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2171-2184. doi: 10.3934/dcdsb.2012.17.2171

[12]

Stephen Baigent. Convex geometry of the carrying simplex for the May-Leonard map. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1697-1723. doi: 10.3934/dcdsb.2018288

[13]

Livio Flaminio, Giovanni Forni. Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows. Electronic Research Announcements, 2019, 26: 16-23. doi: 10.3934/era.2019.26.002

[14]

L. Bakker. The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1183-1200. doi: 10.3934/cpaa.2013.12.1183

[15]

Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437

[16]

Janusz Grabowski, Katarzyna Grabowska, Paweł Urbański. Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings. Journal of Geometric Mechanics, 2014, 6 (4) : 503-526. doi: 10.3934/jgm.2014.6.503

[17]

Joris Vankerschaver, Eva Kanso, Jerrold E. Marsden. The geometry and dynamics of interacting rigid bodies and point vortices. Journal of Geometric Mechanics, 2009, 1 (2) : 223-266. doi: 10.3934/jgm.2009.1.223

[18]

Jaeyoo Choy, Hahng-Yun Chu. On the dynamics of flows on compact metric spaces. Communications on Pure & Applied Analysis, 2010, 9 (1) : 103-108. doi: 10.3934/cpaa.2010.9.103

[19]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[20]

Qianying Xiao, Zuohuan Zheng. $C^1$ weak Palis conjecture for nonsingular flows. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1809-1832. doi: 10.3934/dcds.2018074

 Impact Factor: 

Metrics

  • PDF downloads (22)
  • HTML views (44)
  • Cited by (0)

Other articles
by authors

[Back to Top]