We study the combinatorial Reeb flow on the boundary of a four-dimensional convex polytope. We establish a correspondence between "combinatorial Reeb orbits" for a polytope, and ordinary Reeb orbits for a smoothing of the polytope, respecting action and Conley-Zehnder index. One can then use a computer to find all combinatorial Reeb orbits up to a given action and Conley-Zehnder index. We present some results of experiments testing Viterbo's conjecture and related conjectures. In particular, we have found some new examples of polytopes with systolic ratio $ 1 $.
Citation: |
[1] | A. Abbondandolo, B. Bramham, U. L. Hryniewicz and P. A. S. Salomão, Sharp systolic inequalities for Reeb flows on the three-sphere, Invent. Math., 211 (2018), 687-778. doi: 10.1007/s00222-017-0755-z. |
[2] | A. Abbondandolo, B. Bramham, U. L. Hryniewicz and P. A. S. Salomão, Systolic ratio, index of closed orbits and convexity for tight contact forms on the three-sphere, Compositio Math., 154 (2018), 2643-2680. doi: 10.1112/S0010437X18007558. |
[3] | A. Abbondandolo and J. Kang, Symplectic homology of convex domains and Clarke's duality, preprint, arXiv: 1907.07779. |
[4] | S. Artstein-Avidan, R. Karasev and Y. Ostrover, From symplectic measurements to the Mahler conjecture, Duke Math. J., 163 (2014), 2003-2022. doi: 10.1215/00127094-2794999. |
[5] | S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex bodies, IMRN, 2014, 165–193. doi: 10.1093/imrn/rns216. |
[6] | A. Balitskiy, Equiality cases in Viterbo's conjecture and isoperimeric billiard inequalities, Int. Math. Res. Not., 2020 (2020), 1957-1978. doi: 10.1093/imrn/rny076. |
[7] | K. Cieliebak, H. Hofer, J. Latschev and F. Schlenk, Quantitative symplectic geometry, In Dynamics, Ergodic Theory, and Geometry, Math. Sci. Res. Inst. Publ., 54 (2007), Cambridge University Press, 1–44. doi: 10.1017/CBO9780511755187.002. |
[8] | I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z., 200 (1989), 355-378. doi: 10.1007/BF01215653. |
[9] | I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics. II., Math Z., 203 (1990), 553-567. doi: 10.1007/BF02570756. |
[10] | J. Gutt and M. Hutchings, Symplectic capacities from positive $S^1$-equivariant symplectic homology, Algebraic and Geometric Topology, 18 (2018), 3537-3600. doi: 10.2140/agt.2018.18.3537. |
[11] | J. Gutt, M. Hutchings and V. G. B. Ramos, Examples around the strong Viterbo conjecture, preprint, arXiv: 2003.10854, to appear in Journal of Fixed Point Theory and Applications. |
[12] | P. Haim-Kislev, On the symplectic size of convex polytopes, Geometric and Functional Analysis, 29 (2019), 440-463. doi: 10.1007/s00039-019-00486-4. |
[13] | D. Hermann, Non-Equivalence of Symplectic Capacities for Open Sets with Restricted Contact Type Boundary., Prépublication d'Orsay numéro, 32 (1998). |
[14] | H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces, Ann. Math., 148 (1998), 197-289. doi: 10.2307/120994. |
[15] | H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994. doi: 10.1007/978-3-0348-8540-9. |
[16] | X. Hu and Y. Long, Closed characteristics on non-degenerate star-shaped hypersurfaces in $ {\mathbb R}^2n$, Science In China (Series A), 45 (2002), 1038-1052. doi: 10.1007/BF02879987. |
[17] | M. Hutchings, Taubes's proof of the Weinstein conjecture in dimension three, Bull. AMS, 47 (2010), 73-125. doi: 10.1090/S0273-0979-09-01282-8. |
[18] | M. Hutchings, Quantitative embedded contact homology, J. Diff. Geom., 88 (2011), 231-266. doi: 10.4310/jdg/1320067647. |
[19] | U. Hryniewicz, private communication, 2017. |
[20] | K. Irie, Symplectic homology of fiberwise convex sets and homology of loop spaces, arXiv: 1907.09749. |
[21] | A. F. Künzle, Singular Hamiltonian systems and symplectic capacities, Singularities and Differential Equations, 171–187, Banach Center Publications 33, Polish Academy of Sciences, 1996. |
[22] | P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math, 31 (1978), 157-184. doi: 10.1002/cpa.3160310203. |
[23] | F. Schlenk, Embedding Problems in Symplectic Geometry, Walter de Gruyter, 2005. doi: 10.1515/9783110199697. |
[24] | K. Siegel, Higher symplectic capacities, preprint, arXiv: 1902.01490. |
[25] | C. Viterbo, Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc., 13 (2000), 411-431. doi: 10.1090/S0894-0347-00-00328-3. |
[26] | A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Diff. Geom, 9 (1974), 513-517. doi: 10.4310/jdg/1214432547. |