doi: 10.3934/jcd.2021019
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Model reduction for a power grid model

Pacific Northwest National Laboratory, Richland, WA 99354, USA

* Corresponding author: Panos Stinis

Received  November 2020 Revised  November 2021 Early access December 2021

Fund Project: The work presented here was supported by the U.S. Department of Energy (DOE) Office of Science, Office of Advanced Scientific Computing Research (ASCR) as part of the Multifaceted Mathematics for Rare, Extreme Events in Complex Energy and Environment Systems (MACSER) project. Pacific Northwest National Laboratory is operated by Battelle for the DOE under Contract DE-AC05-76RL01830

We examine the complexity of constructing reduced order models for subsets of the variables needed to represent the state of the power grid. In particular, we apply model reduction techniques to the DeMarco-Zheng power grid model. We show that due to the oscillating nature of the solutions and the absence of timescale separation between resolved and unresolved variables, the construction of accurate reduced models becomes highly non-trivial because one has to account for long memory effects. In addition, we show that a reduced model that includes even a short memory is drastically better than a memoryless model.

Citation: Jing Li, Panos Stinis. Model reduction for a power grid model. Journal of Computational Dynamics, doi: 10.3934/jcd.2021019
References:
[1]

M. CeriottiG. Bussi and M. Parrinello, Colored-noise thermostats à la carte, J. Chem. Theory Comput., 6 (2010), 1170-1180.  doi: 10.1021/ct900563s.  Google Scholar

[2]

A. J. ChorinO. H. Hald and R. Kupferman, Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci. USA, 97 (2000), 2968-2973.  doi: 10.1073/pnas.97.7.2968.  Google Scholar

[3]

A. J. ChorinO. H. Hald and R. Kupferman, Optimal prediction with memory, Phys. D, 166 (2002), 239-257.  doi: 10.1016/S0167-2789(02)00446-3.  Google Scholar

[4]

A. J. Chorin and P. Stinis, Problem reduction, renormalization, and memory, Commun. Appl. Math. Comput. Sci., 1 (2006), 1-27.  doi: 10.2140/camcos.2006.1.1.  Google Scholar

[5]

J. H. Chow, Power System Coherency and Model Reduction, Power Electronics and Power Systems, 94, Springer, New York, 2013. doi: 10.1007/978-1-4614-1803-0.  Google Scholar

[6]

I. DobsonB. A. CarrerasV. E. Lynch and D. E. Newman, Newman, Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization, Chaos, 17 (2007), 1-27.  doi: 10.1063/1.2737822.  Google Scholar

[7]

D. GivonR. Kupferman and A. Stuart, Extracting macroscopic dynamics: Model problems and algorithms, Nonlinearity, 17 (2004), R55-R127.  doi: 10.1088/0951-7715/17/6/R01.  Google Scholar

[8]

O. H. Hald and P. Stinis, Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions, Proc. Natl. Acad. Sci. USA, 104 (2007), 6527-6532.  doi: 10.1073/pnas.0700084104.  Google Scholar

[9]

H. S. LeeS.-H. Ahn and E. F. Darve, The multi-dimensional generalized Langevin equation for conformational motion of proteins, J. Chem. Phys., 150 (2019).  doi: 10.1063/1.5055573.  Google Scholar

[10]

J. Li and P. Stinis, A unified framework for mesh refinement in random and physical space, J. Comput. Phys., 323 (2016), 243-264.  doi: 10.1016/j.jcp.2016.07.027.  Google Scholar

[11]

J. Li and P. Stinis, Mori-Zwanzig reduced models for uncertainty quantification, J. Comput. Dyn., 6 (2019), 39-68.  doi: 10.3934/jcd.2019002.  Google Scholar

[12]

A. E. MotterS. A. MyersM. Anghel and T. Nishikawa, Spontaneous synchrony in power-grid networks, Nature Physics, 9 (2013), 191-197.  doi: 10.1038/nphys2535.  Google Scholar

[13]

D. Osipov and K. Sun, Adaptive nonlinear model reduction for fast power system simulation, IEEE Trans. Power Syst., 33 (2018), 6746-6754.   Google Scholar

[14]

J. QiJ. WangH. Liu and A. D. Dimitrovski, Nonlinear model reduction in power systems by balancing of empirical controllability and observability covariances, IEEE Trans. Power Syst., 32 (2017), 114-126.  doi: 10.1109/TPWRS.2016.2557760.  Google Scholar

[15]

I. SimonsenK. Buzna and S. Peters, Bornholdt and D. Helbing, Transient dynamics increasing network vulnerability to cascading failures, Phys. Rev. Lett., 100 (2008).  doi: 10.1103/PhysRevLett.100.218701.  Google Scholar

[16]

F. SloothaakS. C. Borst and B. Zwart, Robustness of power-law behavior in cascading line failure models, Stoch. Models, 34 (2018), 45-72.  doi: 10.1080/15326349.2017.1383165.  Google Scholar

[17]

P. Stinis, A phase transition approach to detecting singularities of partial differential equations, Commun. Appl. Math. Comput. Sci., 4 (2009), 217-239.  doi: 10.2140/camcos.2009.4.217.  Google Scholar

[18]

P. Stinis, Renormalized Mori-Zwanzig-reduced models for systems without scale separation, Proc. A., (2015), 13pp.  doi: 10.1098/rspa.2014.0446.  Google Scholar

[19]

S. TamrakarM. Conrath and S. Kettemann, Propagation of disturbances in AC electricity grids, Scientific Reports, 8 (2018).  doi: 10.1038/s41598-018-24685-5.  Google Scholar

[20]

D. Witthaut and M. Timme, Braess's paradox in oscillator networks, desynchronization and power outage, New J. Phys., 14 (2012).  doi: 10.1088/1367-2630/14/8/083036.  Google Scholar

[21]

D. Xiu and J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27 (2005), 1118-1139.  doi: 10.1137/040615201.  Google Scholar

[22]

H. Zheng and C. L. DeMarco, A bi-stable branch model for energy-based cascading failure analysis in power systems, North American Power Symposium 2010, Arlington, TX, 2010. doi: 10.1109/NAPS. 2010.5618968.  Google Scholar

[23] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001.   Google Scholar

show all references

References:
[1]

M. CeriottiG. Bussi and M. Parrinello, Colored-noise thermostats à la carte, J. Chem. Theory Comput., 6 (2010), 1170-1180.  doi: 10.1021/ct900563s.  Google Scholar

[2]

A. J. ChorinO. H. Hald and R. Kupferman, Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci. USA, 97 (2000), 2968-2973.  doi: 10.1073/pnas.97.7.2968.  Google Scholar

[3]

A. J. ChorinO. H. Hald and R. Kupferman, Optimal prediction with memory, Phys. D, 166 (2002), 239-257.  doi: 10.1016/S0167-2789(02)00446-3.  Google Scholar

[4]

A. J. Chorin and P. Stinis, Problem reduction, renormalization, and memory, Commun. Appl. Math. Comput. Sci., 1 (2006), 1-27.  doi: 10.2140/camcos.2006.1.1.  Google Scholar

[5]

J. H. Chow, Power System Coherency and Model Reduction, Power Electronics and Power Systems, 94, Springer, New York, 2013. doi: 10.1007/978-1-4614-1803-0.  Google Scholar

[6]

I. DobsonB. A. CarrerasV. E. Lynch and D. E. Newman, Newman, Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization, Chaos, 17 (2007), 1-27.  doi: 10.1063/1.2737822.  Google Scholar

[7]

D. GivonR. Kupferman and A. Stuart, Extracting macroscopic dynamics: Model problems and algorithms, Nonlinearity, 17 (2004), R55-R127.  doi: 10.1088/0951-7715/17/6/R01.  Google Scholar

[8]

O. H. Hald and P. Stinis, Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions, Proc. Natl. Acad. Sci. USA, 104 (2007), 6527-6532.  doi: 10.1073/pnas.0700084104.  Google Scholar

[9]

H. S. LeeS.-H. Ahn and E. F. Darve, The multi-dimensional generalized Langevin equation for conformational motion of proteins, J. Chem. Phys., 150 (2019).  doi: 10.1063/1.5055573.  Google Scholar

[10]

J. Li and P. Stinis, A unified framework for mesh refinement in random and physical space, J. Comput. Phys., 323 (2016), 243-264.  doi: 10.1016/j.jcp.2016.07.027.  Google Scholar

[11]

J. Li and P. Stinis, Mori-Zwanzig reduced models for uncertainty quantification, J. Comput. Dyn., 6 (2019), 39-68.  doi: 10.3934/jcd.2019002.  Google Scholar

[12]

A. E. MotterS. A. MyersM. Anghel and T. Nishikawa, Spontaneous synchrony in power-grid networks, Nature Physics, 9 (2013), 191-197.  doi: 10.1038/nphys2535.  Google Scholar

[13]

D. Osipov and K. Sun, Adaptive nonlinear model reduction for fast power system simulation, IEEE Trans. Power Syst., 33 (2018), 6746-6754.   Google Scholar

[14]

J. QiJ. WangH. Liu and A. D. Dimitrovski, Nonlinear model reduction in power systems by balancing of empirical controllability and observability covariances, IEEE Trans. Power Syst., 32 (2017), 114-126.  doi: 10.1109/TPWRS.2016.2557760.  Google Scholar

[15]

I. SimonsenK. Buzna and S. Peters, Bornholdt and D. Helbing, Transient dynamics increasing network vulnerability to cascading failures, Phys. Rev. Lett., 100 (2008).  doi: 10.1103/PhysRevLett.100.218701.  Google Scholar

[16]

F. SloothaakS. C. Borst and B. Zwart, Robustness of power-law behavior in cascading line failure models, Stoch. Models, 34 (2018), 45-72.  doi: 10.1080/15326349.2017.1383165.  Google Scholar

[17]

P. Stinis, A phase transition approach to detecting singularities of partial differential equations, Commun. Appl. Math. Comput. Sci., 4 (2009), 217-239.  doi: 10.2140/camcos.2009.4.217.  Google Scholar

[18]

P. Stinis, Renormalized Mori-Zwanzig-reduced models for systems without scale separation, Proc. A., (2015), 13pp.  doi: 10.1098/rspa.2014.0446.  Google Scholar

[19]

S. TamrakarM. Conrath and S. Kettemann, Propagation of disturbances in AC electricity grids, Scientific Reports, 8 (2018).  doi: 10.1038/s41598-018-24685-5.  Google Scholar

[20]

D. Witthaut and M. Timme, Braess's paradox in oscillator networks, desynchronization and power outage, New J. Phys., 14 (2012).  doi: 10.1088/1367-2630/14/8/083036.  Google Scholar

[21]

D. Xiu and J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27 (2005), 1118-1139.  doi: 10.1137/040615201.  Google Scholar

[22]

H. Zheng and C. L. DeMarco, A bi-stable branch model for energy-based cascading failure analysis in power systems, North American Power Symposium 2010, Arlington, TX, 2010. doi: 10.1109/NAPS. 2010.5618968.  Google Scholar

[23] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001.   Google Scholar
Figure 1.  A 3-bus system.
Figure 2.  Full system - Evolution of resolved variables. a) $ \omega_1 $ for generator 1, b) $ \omega_2 $ for generator 2 and c) $ \alpha_2 $ for generator 2.
Figure 3.  Full system - Evolution of unresolved variables. a) $ \alpha_3 $ for load bus 3, b) $ V_3 $ for load bus 3.
Figure 4.  Reduced system - Evolution of the memory integral. (a) For $ \omega_1, $ (b) For $ \omega_2. $.
Figure 5.  Reduced model for 3-bus system. Comparison of reduced models with infinite memory and without memory. (a) Evolution of the resolved variable $ \alpha_2, $ (b) Evolution of the resolved variable $ \omega_1 $, and (c) Evolution of the resolved variable $ \omega_2. $
Figure 6.  Reduced model for 3-bus system. Comparison of reduced models with variable memory length (including without memory). (a) Evolution of the resolved variable $ \alpha_2 $ and (b) Evolution of the resolved variable $ \omega_1. $
Figure 7.  Reduced model for 3-bus system. Comparison of reduced models with variable order of the finite-rank projection and timestep $ \Delta t = 10^{-4}. $ (a) Evolution of the resolved variable $ \alpha_2, $ (b) Evolution of the resolved variable $ \omega_1. $
Figure 8.  Reduced model for the 3-bus system. Evolution of the memory kernels $ b_1^{\mu}(s) $ of the resolved variable $ \omega_1 $ on linear functions of the resolved variables. (a) Projection on the 1 degree Hermite polynomial $ h^{(1,0,0)}, $ (b) Projection on the 1 degree Hermite polynomial $ h^{(0,1,0)}, $ and (c) Projection on the 1 degree Hermite polynomial $ h^{(0,0,1)}. $ We have also included in the insets the evolution near the time origin (see text for details).
Figure 9.  Reduced model for 3-bus system. Evolution of the projections $ f_1^{\mu}(s) = (Le^{sL}F_1(u_0,0),h^{\mu}(\hat{u}_0)) $ of $ Le^{sL}F_1(u_0,0) $ on linear functions of the resolved variables. (a) Projection on the 1 degree Hermite polynomial $ h^{(1,0,0)}, $ (b) Projection on the 1 degree Hermite polynomial $ h^{(0,1,0)}, $ and (c) Projection on the 1 degree Hermite polynomial $ h^{(0,0,1)}. $ We have also included in the insets the evolution near the time origin (see text for details).
Figure 10.  Reduced model for particle coupled to heat bath - Evolution of the position $ x(t) $ of the particle (a) For $ t_{memory} = 1, $ (b) For $ t_{memory} = 2, $ and (c) For $ t_{memory} = 3. $
Figure 11.  Reduced model for particle coupled to heat bath - Evolution of the momentum $ p(t) $ of the particle (a) For $ t_{memory} = 1, $ (b) For $ t_{memory} = 2, $ and (c) For $ t_{memory} = 3. $
Table 1.  Parameters for the 3-bus system
$ M_1 $ $ M_2 $ $ b_1 $ $ b_2 $ $ b_3 $ $ D_1 $ $ D_2 $
$ 0.052 $ $ 0.0531 $ $ 10 $ $ 10 $ $ 10 $ $ 0.05 $ $ 0.05 $
$ D_3 $ $ P_2 $ $ P_3 $ $ Q_3 $ $ \epsilon $ $ V_1 $ $ V_2 $
$ 0.005 $ $ -2.0 $ $ 3.0 $ $ 0.1 $ $ 5 $ $ 0.9 $ $ 0.9 $
$ M_1 $ $ M_2 $ $ b_1 $ $ b_2 $ $ b_3 $ $ D_1 $ $ D_2 $
$ 0.052 $ $ 0.0531 $ $ 10 $ $ 10 $ $ 10 $ $ 0.05 $ $ 0.05 $
$ D_3 $ $ P_2 $ $ P_3 $ $ Q_3 $ $ \epsilon $ $ V_1 $ $ V_2 $
$ 0.005 $ $ -2.0 $ $ 3.0 $ $ 0.1 $ $ 5 $ $ 0.9 $ $ 0.9 $
[1]

Jing Li, Panos Stinis. Mori-Zwanzig reduced models for uncertainty quantification. Journal of Computational Dynamics, 2019, 6 (1) : 39-68. doi: 10.3934/jcd.2019002

[2]

Yuanran Zhu, Huan Lei. Effective Mori-Zwanzig equation for the reduced-order modeling of stochastic systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021096

[3]

Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

[4]

Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267

[5]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[6]

Jiaohui Xu, Tomás Caraballo, José Valero. Asymptotic behavior of nonlocal partial differential equations with long time memory. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021140

[7]

Yu-Ting Lin, John Malik, Hau-Tieng Wu. Wave-shape oscillatory model for nonstationary periodic time series analysis. Foundations of Data Science, 2021, 3 (2) : 99-131. doi: 10.3934/fods.2021009

[8]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[9]

Ke Xu, M. Gregory Forest, Xiaofeng Yang. Shearing the I-N phase transition of liquid crystalline polymers: Long-time memory of defect initial data. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 457-473. doi: 10.3934/dcdsb.2011.15.457

[10]

Pierluigi Colli, Gianni Gilardi, Philippe Laurençot, Amy Novick-Cohen. Uniqueness and long-time behavior for the conserved phase-field system with memory. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 375-390. doi: 10.3934/dcds.1999.5.375

[11]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[12]

Elena Bonetti, Pierluigi Colli, Mauro Fabrizio, Gianni Gilardi. Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1001-1026. doi: 10.3934/dcdsb.2006.6.1001

[13]

Chuong Van Nguyen, Phuong Huu Hoang, Hyo-Sung Ahn. Distributed optimization algorithms for game of power generation in smart grid. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 327-348. doi: 10.3934/naco.2019022

[14]

David W. Pravica, Michael J. Spurr. Unique summing of formal power series solutions to advanced and delayed differential equations. Conference Publications, 2005, 2005 (Special) : 730-737. doi: 10.3934/proc.2005.2005.730

[15]

Nancy López Reyes, Luis E. Benítez Babilonia. A discrete hierarchy of double bracket equations and a class of negative power series. Mathematical Control & Related Fields, 2017, 7 (1) : 41-52. doi: 10.3934/mcrf.2017003

[16]

Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873

[17]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

[18]

Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Long-time behaviour of a thermomechanical model for adhesive contact. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 273-309. doi: 10.3934/dcdss.2011.4.273

[19]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2201-2238. doi: 10.3934/dcdsb.2020360

[20]

Lingbing He, Claude Le Bris, Tony Lelièvre. Periodic long-time behaviour for an approximate model of nematic polymers. Kinetic & Related Models, 2012, 5 (2) : 357-382. doi: 10.3934/krm.2012.5.357

 Impact Factor: 

Metrics

  • PDF downloads (51)
  • HTML views (58)
  • Cited by (0)

Other articles
by authors

[Back to Top]