
-
Previous Article
Motion tomography via occupation kernels
- JCD Home
- This Issue
- Next Article
Model reduction for a power grid model
Pacific Northwest National Laboratory, Richland, WA 99354, USA |
We examine the complexity of constructing reduced order models for subsets of the variables needed to represent the state of the power grid. In particular, we apply model reduction techniques to the DeMarco-Zheng power grid model. We show that due to the oscillating nature of the solutions and the absence of timescale separation between resolved and unresolved variables, the construction of accurate reduced models becomes highly non-trivial because one has to account for long memory effects. In addition, we show that a reduced model that includes even a short memory is drastically better than a memoryless model.
References:
[1] |
M. Ceriotti, G. Bussi and M. Parrinello,
Colored-noise thermostats à la carte, J. Chem. Theory Comput., 6 (2010), 1170-1180.
doi: 10.1021/ct900563s. |
[2] |
A. J. Chorin, O. H. Hald and R. Kupferman,
Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci. USA, 97 (2000), 2968-2973.
doi: 10.1073/pnas.97.7.2968. |
[3] |
A. J. Chorin, O. H. Hald and R. Kupferman,
Optimal prediction with memory, Phys. D, 166 (2002), 239-257.
doi: 10.1016/S0167-2789(02)00446-3. |
[4] |
A. J. Chorin and P. Stinis,
Problem reduction, renormalization, and memory, Commun. Appl. Math. Comput. Sci., 1 (2006), 1-27.
doi: 10.2140/camcos.2006.1.1. |
[5] |
J. H. Chow, Power System Coherency and Model Reduction, Power Electronics and Power Systems, 94, Springer, New York, 2013.
doi: 10.1007/978-1-4614-1803-0. |
[6] |
I. Dobson, B. A. Carreras, V. E. Lynch and D. E. Newman,
Newman, Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization, Chaos, 17 (2007), 1-27.
doi: 10.1063/1.2737822. |
[7] |
D. Givon, R. Kupferman and A. Stuart,
Extracting macroscopic dynamics: Model problems and algorithms, Nonlinearity, 17 (2004), R55-R127.
doi: 10.1088/0951-7715/17/6/R01. |
[8] |
O. H. Hald and P. Stinis,
Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions, Proc. Natl. Acad. Sci. USA, 104 (2007), 6527-6532.
doi: 10.1073/pnas.0700084104. |
[9] |
H. S. Lee, S.-H. Ahn and E. F. Darve,
The multi-dimensional generalized Langevin equation for conformational motion of proteins, J. Chem. Phys., 150 (2019).
doi: 10.1063/1.5055573. |
[10] |
J. Li and P. Stinis,
A unified framework for mesh refinement in random and physical space, J. Comput. Phys., 323 (2016), 243-264.
doi: 10.1016/j.jcp.2016.07.027. |
[11] |
J. Li and P. Stinis,
Mori-Zwanzig reduced models for uncertainty quantification, J. Comput. Dyn., 6 (2019), 39-68.
doi: 10.3934/jcd.2019002. |
[12] |
A. E. Motter, S. A. Myers, M. Anghel and T. Nishikawa,
Spontaneous synchrony in power-grid networks, Nature Physics, 9 (2013), 191-197.
doi: 10.1038/nphys2535. |
[13] |
D. Osipov and K. Sun,
Adaptive nonlinear model reduction for fast power system simulation, IEEE Trans. Power Syst., 33 (2018), 6746-6754.
|
[14] |
J. Qi, J. Wang, H. Liu and A. D. Dimitrovski,
Nonlinear model reduction in power systems by balancing of empirical controllability and observability covariances, IEEE Trans. Power Syst., 32 (2017), 114-126.
doi: 10.1109/TPWRS.2016.2557760. |
[15] |
I. Simonsen, K. Buzna and S. Peters,
Bornholdt and D. Helbing, Transient dynamics increasing network vulnerability to cascading failures, Phys. Rev. Lett., 100 (2008).
doi: 10.1103/PhysRevLett.100.218701. |
[16] |
F. Sloothaak, S. C. Borst and B. Zwart,
Robustness of power-law behavior in cascading line failure models, Stoch. Models, 34 (2018), 45-72.
doi: 10.1080/15326349.2017.1383165. |
[17] |
P. Stinis,
A phase transition approach to detecting singularities of partial differential equations, Commun. Appl. Math. Comput. Sci., 4 (2009), 217-239.
doi: 10.2140/camcos.2009.4.217. |
[18] |
P. Stinis,
Renormalized Mori-Zwanzig-reduced models for systems without scale separation, Proc. A., (2015), 13pp.
doi: 10.1098/rspa.2014.0446. |
[19] |
S. Tamrakar, M. Conrath and S. Kettemann,
Propagation of disturbances in AC electricity grids, Scientific Reports, 8 (2018).
doi: 10.1038/s41598-018-24685-5. |
[20] |
D. Witthaut and M. Timme,
Braess's paradox in oscillator networks, desynchronization and power outage, New J. Phys., 14 (2012).
doi: 10.1088/1367-2630/14/8/083036. |
[21] |
D. Xiu and J. S. Hesthaven,
High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27 (2005), 1118-1139.
doi: 10.1137/040615201. |
[22] |
H. Zheng and C. L. DeMarco, A bi-stable branch model for energy-based cascading failure analysis in power systems, North American Power Symposium 2010, Arlington, TX, 2010.
doi: 10.1109/NAPS. 2010.5618968. |
[23] |
R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001.
![]() ![]() |
show all references
References:
[1] |
M. Ceriotti, G. Bussi and M. Parrinello,
Colored-noise thermostats à la carte, J. Chem. Theory Comput., 6 (2010), 1170-1180.
doi: 10.1021/ct900563s. |
[2] |
A. J. Chorin, O. H. Hald and R. Kupferman,
Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci. USA, 97 (2000), 2968-2973.
doi: 10.1073/pnas.97.7.2968. |
[3] |
A. J. Chorin, O. H. Hald and R. Kupferman,
Optimal prediction with memory, Phys. D, 166 (2002), 239-257.
doi: 10.1016/S0167-2789(02)00446-3. |
[4] |
A. J. Chorin and P. Stinis,
Problem reduction, renormalization, and memory, Commun. Appl. Math. Comput. Sci., 1 (2006), 1-27.
doi: 10.2140/camcos.2006.1.1. |
[5] |
J. H. Chow, Power System Coherency and Model Reduction, Power Electronics and Power Systems, 94, Springer, New York, 2013.
doi: 10.1007/978-1-4614-1803-0. |
[6] |
I. Dobson, B. A. Carreras, V. E. Lynch and D. E. Newman,
Newman, Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization, Chaos, 17 (2007), 1-27.
doi: 10.1063/1.2737822. |
[7] |
D. Givon, R. Kupferman and A. Stuart,
Extracting macroscopic dynamics: Model problems and algorithms, Nonlinearity, 17 (2004), R55-R127.
doi: 10.1088/0951-7715/17/6/R01. |
[8] |
O. H. Hald and P. Stinis,
Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions, Proc. Natl. Acad. Sci. USA, 104 (2007), 6527-6532.
doi: 10.1073/pnas.0700084104. |
[9] |
H. S. Lee, S.-H. Ahn and E. F. Darve,
The multi-dimensional generalized Langevin equation for conformational motion of proteins, J. Chem. Phys., 150 (2019).
doi: 10.1063/1.5055573. |
[10] |
J. Li and P. Stinis,
A unified framework for mesh refinement in random and physical space, J. Comput. Phys., 323 (2016), 243-264.
doi: 10.1016/j.jcp.2016.07.027. |
[11] |
J. Li and P. Stinis,
Mori-Zwanzig reduced models for uncertainty quantification, J. Comput. Dyn., 6 (2019), 39-68.
doi: 10.3934/jcd.2019002. |
[12] |
A. E. Motter, S. A. Myers, M. Anghel and T. Nishikawa,
Spontaneous synchrony in power-grid networks, Nature Physics, 9 (2013), 191-197.
doi: 10.1038/nphys2535. |
[13] |
D. Osipov and K. Sun,
Adaptive nonlinear model reduction for fast power system simulation, IEEE Trans. Power Syst., 33 (2018), 6746-6754.
|
[14] |
J. Qi, J. Wang, H. Liu and A. D. Dimitrovski,
Nonlinear model reduction in power systems by balancing of empirical controllability and observability covariances, IEEE Trans. Power Syst., 32 (2017), 114-126.
doi: 10.1109/TPWRS.2016.2557760. |
[15] |
I. Simonsen, K. Buzna and S. Peters,
Bornholdt and D. Helbing, Transient dynamics increasing network vulnerability to cascading failures, Phys. Rev. Lett., 100 (2008).
doi: 10.1103/PhysRevLett.100.218701. |
[16] |
F. Sloothaak, S. C. Borst and B. Zwart,
Robustness of power-law behavior in cascading line failure models, Stoch. Models, 34 (2018), 45-72.
doi: 10.1080/15326349.2017.1383165. |
[17] |
P. Stinis,
A phase transition approach to detecting singularities of partial differential equations, Commun. Appl. Math. Comput. Sci., 4 (2009), 217-239.
doi: 10.2140/camcos.2009.4.217. |
[18] |
P. Stinis,
Renormalized Mori-Zwanzig-reduced models for systems without scale separation, Proc. A., (2015), 13pp.
doi: 10.1098/rspa.2014.0446. |
[19] |
S. Tamrakar, M. Conrath and S. Kettemann,
Propagation of disturbances in AC electricity grids, Scientific Reports, 8 (2018).
doi: 10.1038/s41598-018-24685-5. |
[20] |
D. Witthaut and M. Timme,
Braess's paradox in oscillator networks, desynchronization and power outage, New J. Phys., 14 (2012).
doi: 10.1088/1367-2630/14/8/083036. |
[21] |
D. Xiu and J. S. Hesthaven,
High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27 (2005), 1118-1139.
doi: 10.1137/040615201. |
[22] |
H. Zheng and C. L. DeMarco, A bi-stable branch model for energy-based cascading failure analysis in power systems, North American Power Symposium 2010, Arlington, TX, 2010.
doi: 10.1109/NAPS. 2010.5618968. |
[23] |
R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001.
![]() ![]() |











[1] |
Jing Li, Panos Stinis. Mori-Zwanzig reduced models for uncertainty quantification. Journal of Computational Dynamics, 2019, 6 (1) : 39-68. doi: 10.3934/jcd.2019002 |
[2] |
Yuanran Zhu, Huan Lei. Effective Mori-Zwanzig equation for the reduced-order modeling of stochastic systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 959-982. doi: 10.3934/dcdss.2021096 |
[3] |
Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715 |
[4] |
Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267 |
[5] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061 |
[6] |
Jiaohui Xu, Tomás Caraballo, José Valero. Asymptotic behavior of nonlocal partial differential equations with long time memory. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021140 |
[7] |
Yu-Ting Lin, John Malik, Hau-Tieng Wu. Wave-shape oscillatory model for nonstationary periodic time series analysis. Foundations of Data Science, 2021, 3 (2) : 99-131. doi: 10.3934/fods.2021009 |
[8] |
Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119 |
[9] |
Yanxue Yang, Shou-Qiang Du, Yuanyuan Chen. Real-time pricing method for smart grid based on social welfare maximization model. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022039 |
[10] |
Chuong Van Nguyen, Phuong Huu Hoang, Hyo-Sung Ahn. Distributed optimization algorithms for game of power generation in smart grid. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 327-348. doi: 10.3934/naco.2019022 |
[11] |
Ke Xu, M. Gregory Forest, Xiaofeng Yang. Shearing the I-N phase transition of liquid crystalline polymers: Long-time memory of defect initial data. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 457-473. doi: 10.3934/dcdsb.2011.15.457 |
[12] |
Pierluigi Colli, Gianni Gilardi, Philippe Laurençot, Amy Novick-Cohen. Uniqueness and long-time behavior for the conserved phase-field system with memory. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 375-390. doi: 10.3934/dcds.1999.5.375 |
[13] |
Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625 |
[14] |
Elena Bonetti, Pierluigi Colli, Mauro Fabrizio, Gianni Gilardi. Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1001-1026. doi: 10.3934/dcdsb.2006.6.1001 |
[15] |
David W. Pravica, Michael J. Spurr. Unique summing of formal power series solutions to advanced and delayed differential equations. Conference Publications, 2005, 2005 (Special) : 730-737. doi: 10.3934/proc.2005.2005.730 |
[16] |
Nancy López Reyes, Luis E. Benítez Babilonia. A discrete hierarchy of double bracket equations and a class of negative power series. Mathematical Control and Related Fields, 2017, 7 (1) : 41-52. doi: 10.3934/mcrf.2017003 |
[17] |
Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873 |
[18] |
Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105 |
[19] |
Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Long-time behaviour of a thermomechanical model for adhesive contact. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 273-309. doi: 10.3934/dcdss.2011.4.273 |
[20] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2201-2238. doi: 10.3934/dcdsb.2020360 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]